Self-Supervised Machine Learning workshop, 24-25th Feb
pip
.Find the full experiments with more comparisons in the paper: “Benchmarking Self-Supervised Methods for Accelerated MRI Reconstruction”, 2025.
Notes:
First, define all common code for training (MRI physics, masking, model, data and metrics).
We provide many easy-to-use classes for MRI-related experiments. See Example - “Tour of MRI functionality in DeepInverse” for more.
We train with a custom FastMRI subset of 973 images created using deepinv.datasets.FastMRISliceDataset.save_simple_dataset
(download here), and load it with deepinv.datasets.SimpleFastMRISliceDataset
.
Note: by using this dataset, you confirm that you have agreed to and signed the FastMRI data use agreement.
Define MRI physics where each image is masked with a random Gaussian-weighted Cartesian mask at 4x acceleration. Define an unrolled MoDL network with a small UNet backbone (3 scales) and 3 unrolled iterations. See Example - “Tour of MRI functionality in DeepInverse” for other examples.
physics_generator = dinv.physics.generator.GaussianMaskGenerator(
img_size=(128, 128), acceleration=4, rng=rng, device=device
)
physics = dinv.physics.MRI(img_size=(128, 128), device=device)
denoiser = dinv.models.UNet(2, 2, scales=3)
model = lambda: dinv.utils.demo.demo_mri_model(denoiser=denoiser, num_iter=3, device=device).to(device)
Define FastMRI small train and test datasets resized for speed, then simulate random k-space measurements using the physics, then load the generated measurements. We keep the test set at maximum 50 images for speed.
from torchvision.transforms import Resize
train_dataset = dinv.datasets.SimpleFastMRISliceDataset("data", file_name=file_name, transform=Resize(128), train=True, train_percent=0.8, download=True)
test_dataset = dinv.datasets.SimpleFastMRISliceDataset("data", file_name=file_name, transform=Resize(128), train=False, train_percent=0.8,)
path = dinv.datasets.generate_dataset(train_dataset=train_dataset, test_dataset=test_dataset, physics=physics, physics_generator=physics_generator, save_physics_generator_params=True, overwrite_existing=False, device=device, save_dir="data", batch_size=1)
train_dataset, test_dataset = dinv.datasets.HDF5Dataset(path, split="train", load_physics_generator_params=True), dinv.datasets.HDF5Dataset(path, split="test", load_physics_generator_params=True)
train_dataloader, test_dataloader = torch.utils.data.DataLoader(train_dataset, shuffle=True), torch.utils.data.DataLoader(torch.utils.data.Subset(test_dataset, range(min(len(test_dataset), 50))))
def train(loss: dinv.loss.Loss, epochs: int = 0):
_model = model()
trainer = dinv.Trainer(
model = _model,
physics = physics,
optimizer = torch.optim.Adam(_model.parameters(), lr=1e-3),
train_dataloader = train_dataloader,
eval_dataloader = test_dataloader,
epochs = epochs,
losses = loss,
scheduler = None,
metrics = dinv.metric.PSNR(complex_abs=True),
ckp_interval = 10,
device = device,
eval_interval = 1,
save_path = "models",
plot_images = False,
wandb_vis = False,
)
trainer.train()
trainer.plot_images = True
return trainer
The EI self-supervised loss [1] assumes that the set of signals is invariant to a group of transformations in order to learn from incomplete measurement data alone:
\(\mathcal{L}_\text{EI}=\lVert T_g \hat{x} - f(A(T_g \hat{x}), A)\rVert_2^2\)
where \(\hat{x}=f(y, A)\) is a reconstructed signal and \(T_g\) is a transformation sampled at random from a group \(g\sim G\). EI was applied to MRI in [2]. Note that this works even when \(A\) is fixed across the dataset as it constructs multiple virtual operators.
Implementation: loss functions abstracted into EILoss(...)
, keeping a modular structure.
See also: Example - “Self-supervised learning with Equivariant Imaging for MRI”; Example - “Image transformations for Equivariant Imaging”; Docs - deepinv.loss.EILoss
.
[1] Chen D., Tachella J. & Davies M., “Equivariant Imaging: Learning Beyond the Range Space”
[2] Chen D., Tachella J. & Davies M., “Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements”
loss = [
dinv.loss.MCLoss(),
dinv.loss.EILoss(transform=dinv.transform.Rotate())
]
# Set epochs > 0 to train the model
trainer = train(loss, epochs=0)
# Load pretrained model for 50 epochs, test on test dataset, and save sample reconstruction
trainer.load_model("models/pretrained/ei.pth.tar")
results["ei"] = trainer.test(test_dataloader)
physics.update_parameters(**params)
results["ei"]["sample"] = trainer.model(y, physics)
Test results:
PSNR no learning: 26.897 +- 2.730
PSNR: 30.643 +- 2.992
EI was extended beyond the Euclidean transformation group to the non-linear diffeomorphic group in [3] for MRI problems:
\(\mathcal{L}_\text{Diffeo-EI}=\mathcal{L}_\text{EI}\text{ where }G=\text{Diff}(\mathbb{R}^n)\)
See also: Example - “Image transforms for equivariance & augmentations”.
[3] Wang A. & Davies M., “Fully unsupervised dynamic MRI reconstruction”
The model has 2070091 trainable parameters
# Load pretrained model for 50 epochs, test on test dataset, and save sample reconstruction
trainer.load_model("models/pretrained/diffeo-ei.pth.tar")
results["diffeo-ei"] = trainer.test(test_dataloader)
physics.update_parameters(**params)
results["diffeo-ei"]["sample"] = trainer.model(y, physics)
Test results:
PSNR no learning: 26.897 +- 2.730
PSNR: 31.388 +- 2.496
The MOI self-supervised loss [4] can be used to learn when signals are observed via multiple (possibly incomplete) forward operators \(\{A_g\}_{g=1}^{G}\), i.e. \(y_i = A_{g_i}x_i\) where \(g_i\in \{1,\dots,G\}\). The loss is constructed as follows:
\(\mathcal{L}_\text{MOI}=\lVert\hat{x} - f(A_g\hat{x},A_g)\rVert_2^2\)
where \(\hat{x}=f(y,A_s)\) is a reconstructed signal (observed via operator \(A_s\)) and \(A_g\) is a forward operator sampled at random from a set \(\{A_g\}_{g=1}^{G}\).
See also: Example - “Self-supervised learning from incomplete measurements of multiple operators.”; Docs - deepinv.loss.MOILoss
.
[4] Chen D., Tachella J. & Davies M., “Unsupervised Learning From Incomplete Measurements for Inverse Problems”
The model has 2070091 trainable parameters
# Load pretrained model for 50 epochs, test on test dataset, and save sample reconstruction
trainer.load_model("models/pretrained/moi.pth.tar")
results["moi"] = trainer.test(test_dataloader)
physics.update_parameters(**params)
results["moi"]["sample"] = trainer.model(y, physics)
Test results:
PSNR no learning: 26.897 +- 2.730
PSNR: 31.260 +- 2.339
One can combine the multi-operator and equivariant imaging losses to leverage an even greater set of virtual operators (using notation from above), introduced in [5]:
\(\mathcal{L}_\text{MO-EI}=\lVert T_g\hat{x} - f(A_h(T_g \hat{x}), A_h)\rVert_2^2,\quad A_h\in\{A_h\}_{h=1}^{H},g\in G\)
where \(H\) is the set of operators and \(G\) is the group.
Because of the modularity of DeepInverse, this is very easily implemented. See also: Docs - deepinv.loss.MOEILoss
.
[5] Wang A. & Davies M., “Benchmarking Self-Supervised Methods for Accelerated MRI Reconstruction”
The model has 2070091 trainable parameters
# Load pretrained model for 50 epochs, test on test dataset, and save sample reconstruction
trainer.load_model("models/pretrained/mo-ei.pth.tar")
results["mo-ei"] = trainer.test(test_dataloader)
physics.update_parameters(**params)
results["mo-ei"]["sample"] = trainer.model(y, physics)
Test results:
PSNR no learning: 26.897 +- 2.730
PSNR: 31.601 +- 2.326
The SSDU measurement splitting loss [6,7,8] splits the measurement \(y\in\mathbb{R}^m\) and forward operator \(A\) into two smaller pairs \((y_1\in\mathbb{R}^{m_1},A_1)\) and \((y_2\in\mathbb{R}^{m_2},A_2)\) to compute the self-supervised loss:
\(\mathcal{L}_\text{SSDU}=\frac{m}{m_2}\lVert y_2 - A_2 f(y_1,A_1)\rVert_2^2\)
where \(f\) is the network, \(A_1 = M_1A, A_2 = M_2A\), and \(M_i\) are randomly generated masks (i.e. diagonal matrices) such that \(M_1+M_2=\mathbb{I}_m\). At inference-time, SSDU simply uses the full measurements \(\hat x=f(y,A)\).
See also: Example - “Self-supervised learning with measurement splitting”.
[6] Yaman B. et al., “SSDU”
[7] Liu J. et al., “RARE: Image Reconstruction using Deep Priors Learned without GT”
[8] Eldeniz C. et al., “Phase2Phase…”
The model has 2070091 trainable parameters
# Load pretrained model for 50 epochs, test on test dataset, and save sample reconstruction
trainer.load_model("models/pretrained/ssdu.pth.tar")
results["ssdu"] = trainer.test(test_dataloader)
physics.update_parameters(**params)
results["ssdu"]["sample"] = trainer.model(y, physics)
Test results:
PSNR no learning: 26.897 +- 2.730
PSNR: 26.796 +- 2.191
We can extend SSDU [6] during inference-time by averaging the model over multiple realizations of the random splitting, i.e.
\(\hat{x} = \frac{1}{N}\sum_{i=1}^N f(y_1^{(i)},A_1^{(i)})\)
where \(N\) is the number of Monte-Carlo samples. The training loss function remains the same as SSDU. This was proposed in [9] for CT denoising, and has shown promising results in [3].
[9] Hendriksen A., Pelt D., Batenburg K., “Noise2Inverse: Self-supervised deep convolutional denoising for tomography”
The model has 2070091 trainable parameters
# Load pretrained SSDU model for 50 epochs, test on test dataset, and save sample reconstruction
trainer.load_model("models/pretrained/ssdu.pth.tar")
results["noise2inverse"] = trainer.test(test_dataloader)
physics.update_parameters(**params)
results["noise2inverse"]["sample"] = trainer.model(y, physics)
Test results:
PSNR no learning: 26.897 +- 2.730
PSNR: 26.282 +- 2.030
The Weighted-SSDU [10] loss frames SSDU [6] as a Bernoulli-noise special case of Noisier2Noise [11] and propose a weighting to the SSDU loss to improve SSDU:
\(\mathcal{L}_\text{Weighted-SSDU}=(1-\mathbf{K})^{-1/2}\mathcal{L}_\text{SSDU}\)
where \(\mathbf{K}\) depends on the PDF of the measurement mask \(M\) and the splitting mask \(M_1\).
[10] Millard C. & Chiew M., “A theoretical framework for self-supervised MR image reconstruction using sub-sampling via variable density Noisier2Noise”
[11] Moran N. et al., “Noisier2Noise: Learning to Denoise from Unpaired Noisy Data”
split_generator = dinv.physics.generator.GaussianMaskGenerator(img_size=(128, 128), acceleration=2, rng=rng, device=device)
loss = dinv.loss.WeightedSplittingLoss(
mask_generator=dinv.physics.generator.MultiplicativeSplittingMaskGenerator((1, 128, 128), split_generator),
physics_generator=physics_generator
)
The model has 2070091 trainable parameters
# Load pretrained model for 50 epochs, test on test dataset, and save sample reconstruction
trainer.load_model("models/pretrained/weighted-ssdu.pth.tar")
results["weighted-ssdu"] = trainer.test(test_dataloader)
physics.update_parameters(**params)
results["weighted-ssdu"]["sample"] = trainer.model(y, physics)
Test results:
PSNR no learning: 26.897 +- 2.730
PSNR: 26.780 +- 1.295
We have numerous other self-supervised learning methods implemented in DeepInverse and benchmarked in “Benchmarking Self-Supervised Methods for Accelerated MRI Reconstruction”, including:
[12] Bora A., Price E. & Dimakis A., “AmbientGAN”
[13] Pajot A., de Bezenac E., Gallinari P., “Unsupervised Adversarial Image Reconstruction”
[14] Cole E. et al., “Fast Unsupervised MRI Reconstruction … Using GANs”
[15] Darestani M. & Heckel R., “Accelerated MRI with Un-trained Neural Networks”
[16] Tachella J., Davies M. & Jacques L., “UNSURE”
We also provide an upper-limit experiment using oracle supervised learning…
\(\mathcal{L}_\text{sup}=\lVert\hat x-x\rVert_2^2\)
…and a naive unsupervised baseline using only measurement consistency:
\(\mathcal{L}_\text{MC}=\lVert A\hat x-y\rVert_2^2\)
trainer = train(dinv.loss.SupLoss(), epochs=0)
trainer.load_model("models/pretrained/sup.pth.tar")
results["sup"] = trainer.test(test_dataloader)
physics.update_parameters(**params)
results["sup"]["sample"] = trainer.model(y, physics)
The model has 2070091 trainable parameters
Test results:
PSNR no learning: 26.897 +- 2.730
PSNR: 31.779 +- 2.595
trainer = train(dinv.loss.MCLoss(), epochs=0)
trainer.load_model("models/pretrained/mc.pth.tar")
results["mc"] = trainer.test(test_dataloader)
physics.update_parameters(**params)
results["mc"]["sample"] = trainer.model(y, physics)
The model has 2070091 trainable parameters
Test results:
PSNR no learning: 26.897 +- 2.730
PSNR: 26.896 +- 2.730
Note: these results are for a toy problem on 128x128 images trained for 50 epochs. For full benchmark results on full datasets see the paper “Benchmarking Self-Supervised Methods for Accelerated MRI Reconstruction”.
import pandas as pd
pd.DataFrame.from_dict(results, orient="index", columns=("PSNR", "PSNR no learning")).sort_values('PSNR', ascending=False).round(3).transpose()
sup | mo-ei | diffeo-ei | moi | ei | mc | ssdu | noise2inverse | |
---|---|---|---|---|---|---|---|---|
PSNR | 31.779 | 31.601 | 31.388 | 31.260 | 30.643 | 26.896 | 26.796 | 26.282 |
PSNR no learning | 26.897 | 26.897 | 26.897 | 26.897 | 26.897 | 26.897 | 26.897 | 26.897 |
Note: these results are for a toy problem on 128x128 images trained for 50 epochs. For full benchmark results on full datasets see the paper “Benchmarking Self-Supervised Methods for Accelerated MRI Reconstruction”.
Method | Implementation |
---|---|
MC | dinv.loss.MCLoss() |
SSDU | dinv.loss.SplittingLoss(eval_split_input=False) |
Noise2Inverse | dinv.loss.SplittingLoss(eval_split_input=True) |
Weighted-SSDU | dinv.loss.WeightedSplittingLoss() |
Adversarial | dinv.loss.UnsupAdversarialGeneratorLoss() |
UAIR | dinv.loss.UAIRGeneratorLoss() |
VORTEX | dinv.loss.VORTEXLoss() |
EI | dinv.loss.EILoss() |
MOI | dinv.loss.MOILoss() |
MO-EI | dinv.loss.MOEILoss() |
If you found this useful, please cite the paper using: