import joblib
import numpy as np
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
from sklearn.metrics import r2_score
Sample model training: diabetes dataset classification
This notebook trains a sample model using the diabetes toy problem, and saves a model artifact into this folder.
1. Download data
= load_diabetes(return_X_y=True)
X, y = train_test_split(X, y, test_size=0.2, random_state=0)
X_train, X_test, y_train, y_test
"../data/diabetes.npz", X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test) np.savez(
2. Train model
= [np.load("../data/diabetes.npz")[x] for x in ("X_train", "y_train", "X_test", "y_test")]
X_train, y_train, X_test, y_test
=0.1
alpha
= Ridge(alpha=alpha).fit(X_train, y_train) model
3. Save model
"model.pkl") joblib.dump(model,
['model.pkl']