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Abstract

Dynamic Latent Spaces with Statistical Finite Elements
Andrew Wang, Christ’s College
1 June 2022

Time-dependent physical phenomena in nature are often modelled by partial differential
equations (PDEs), which are widely used in science and engineering, for example, for structural
mechanics, tidal waves, heat transfer or chemical diffusion. It has become clear now that the
best models of physical phenomena are constrained not only by these laws of physics, but also
by observed data. However, it is still challenging to assimilate real-world data with underlying
physics in a coherent, statistical way and with a quantifiable uncertainty, so that model estimates
can be interpreted with risk, because of the variability and complexity of practical data.

A new data-driven approach that encapsulates inherent uncertainties in the physical world is
pivotal in developing digital twins, which are making an increasing impact in a growing number
of science and engineering fields, for example in structural health monitoring, climate modelling,
precision medicine and agricultural monitoring. Digital twins are useful in estimating the true
state of the physical twin, and forecasting their future. For this purpose, all of these digital
twins applications are characterised by the need to assimilate large quantities of sensor data
into a virtual, "digital twin" physics model, whether that model be of sea surface temperature,
the heart, or a structural beam [21].

The statistical finite element method (statFEM) has been developed in [6] in order to tackle
this problem of data assimilation. The method enhances the finite element method in solving
spatiotemporal PDEs by providing a framework to assimilate noisy data in a Bayesian man-
ner using stochastic filtering. However, with the widespread use of more advanced sensing
technologies, it has become vital to achieve the same style of data assimilation for complex
datasets, such as video and audio, where the mapping between data and underlying variables is
non-linear, spatially dependent in 2D, and harder to estimate. Our work focuses on developing
a statistical framework around statFEM for complex datasets, leveraging recent advances in ma-
chine learning and computer vision techniques. We approach this problem using representation
learning; as in statFEM, the physics model is contained in a dynamic low-dimensional latent
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space, but we learn the mapping to and from higher-dimensional data using deep unsupervised
learning.

This project describes the use of the Variational Autoencoder (VAE) [16], a form of deep
generative model, which is capable of being trained in order to probabilistically model the data
likelihood and a meaningful low-dimensional latent space, using deep convolutional neural
networks to model the mapping. We train and test the VAE neural networks on computer vision
datasets to show that it can quickly learn a map from data to smooth latent spaces, where
the coordinates of inferred points encode some information characteristic of the dataset, for
example, the shape of a handwritten digit or the spatial position of an object in the image.

Building on this, we show that the Kalman VAE (KVAE) [9] allows us to model time
dependency in the dataset in order to model linear dynamics. We show that by factorising
the log-likelihood following [9], we can separate the problem of inferring a dynamic latent
space into two parts: the standard time-independent VAE latent space inference to model a
complex data-generating process, and a Kalman filter to infer sequences in the state-space in
the context of a dynamical model. We note that there has been much interest in developing
autoencoder-based models for dynamic latent space modelling; however, the specific use of
the Kalman filter, which is a form of sequential Bayesian inference, will be of use to us below.
Training on videos generated from a dynamical model, we show that the KVAE can infer a
latent space similar to the generating physics, and also generate realistic observations forwards
in time from the latent space.

However, for our purposes, and for digital twins applications, we do not actually want to
learn the dynamical model, as was the focus in [9]. Instead, we wish to fix the dynamics to a
dynamical model derived from a physical PDE. Since the dynamical model in the KVAE is
ultimately a linear state-space transition model, we show that in the case of a linear PDE, we
can use statFEM to solve the PDE and directly fix the parameters of the transition model, where
the statFEM stochastic filter becomes the Kalman filter in the KVAE. We name our resulting
physics-informed model the statFEM-KVAE for this reason. We train and test statFEM-KVAE
using videos generated from simple linear PDEs, such as of waves following the wave equation.
We show that the trained model can extract not only a meaningful, but the correct latent space,
that represents a Bayesian combination of the underlying PDE variables (e.g. wave position)
and the data (videos of waves moving). Our model provides a statistical framework for the
motivating aims outlined above, for example for digital twins applications: it can continually
estimate and calibrate a physical model given data, predict and interpolate in time and space,

and return all predictions with an associated uncertainty.
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Chapter 1

Introduction

1.1 Motivation

Natural physical phenomena are often described with physics models such as with partial
differential equations (PDEs). However, in many fields of science and engineering, it is still an
important and challenging problem to estimate these models from real-world observed data.
For example, given fluid flow video data captured in a laboratory experiment, which is assumed

to follow a certain spatiotemporal PDE, this could mean:

» Estimate the evolution of the variables of the underlying low-dimensional physical

process with a statistical uncertainty quantification, given higher-dimensional data;
* Calibrate a misspecified underlying physical model by assimilating data;

* Generate new, reconstructed observations from the underlying model for data synthesis

or imputation of sparse data.

This work has an importance in the research of data-driven digital twins, which are making
an impact in a growing number of domains, such as medicine [21], civil engineering [8],
agriculture [26] and climate science [3]. A digital twin is a mathematical model that must be
"dynamically updated with data from its physical twin" [1]. In order to do this, we need a way
to incorporate large quantities of data with the underlying physical model, and learn a mapping
between the two.

The current method used to address the tasks above is the statistical finite element method
(statFEM) introduced in [6, 11]. However, given an increase in the complexity of sensing
options, it is now important to be able to apply this data assimilation method with increasingly
complex datasets. For example, in [8], a digital twin of the main I-beams of a bridge is

successfully developed, combining strain sensor measurements with the underlying structural



1.2 Proposed approach 2

beam theory using statFEM. However, it is often only possible to have remotely-sensed data
such as video or audio data, such as when monitoring tidal waves [13]. Such challenging data
requires advances in artificial intelligence in order to learn the data mapping.

Furthermore, digital twins "must be able to extrapolate and issue predictions about yet-
unseen conditions and future system states, and it must do so with quantified uncertainties and
acceptable levels of risk" [21]. This means that any model we develop must be equipped with a
coherent, interpretable statistical model for quantification of uncertainty in the model, data and
the predictions.

1.2 Proposed approach

We approach this problem by embedding dynamics into a latent space that is physics-informed;
that is, a physical model dictates how some latent variables should evolve spatiotemporally. We
then probabilistically combine the latent space and data into one coherent generative model
that is then trained using deep representation learning.

Our approach is built on two advances. First, we use the recent statistical finite element
method [6] as a way to synthesise finite element models with observed data under uncertainty.
Second, we use a deep generative model with a dynamic latent space to perform deep unsu-
pervised representation learning. We choose the Kalman Variational Autoencoder introduced
in [9] for reasons detailed in Section 1.3.1. There are two ways of looking at how our model
solves the above problem. Firstly, we want to equip a deep generative model with dynamics
determined by a physical model by combining the two in a Bayesian manner, instead of learning
dynamics from scratch. Alternatively, we want to equip a physics model solver with deep
feature extraction capabilities.

In Section 2 we introduce our proposed model applied to linear SPDEs. First, we solve the
PDE using statFEM to obtain a linear transition model. Our model can then be split into two
separate parts: a standard, time-independent Variational Autoencoder (VAE) which learns a
latent representation, and a Kalman filter which infers hidden latent sequences from the VAE
latent space samples according to the transition model. This turns out to be equivalent to setting
a physics-informed prior in the VAE to the transition model itself, so that the data assimilation
is an elegant Bayesian combination of the data likelihood and the physics prior. For this reason,
we name our model statFEM-KVAE. This methodology is readily extended to the non-linear
case, building upon theory in [6].

Recently, there has been little progress on physics-informed representation learning models
for estimating dynamical models. Most work focuses on learning the dynamical model itself,

for example, see [10], and Section 1.4 for a full review. However, for digital twins and many
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other science and engineering applications, the problem is to learn a representation from data in
the face of a preexisting and assumed underlying physical model. We therefore need a coherent
statistical framework where we can define fully the dynamical model as a statistical prior. Our
work is novel, since we combine the ability of statFEM to assimilate data with a physical model

under uncertainty with a deep representation learning model.

1.3 Background

1.3.1 Deep Generative Models

Deep generative models emerged as a way of writing a joint probabilistic model of data and
latent representations, which is learned using neural networks given large quantities of data.
The Variational Autoencoder [16] is a popular model for learning meaningful latent space
representations in a convenient Bayesian framework ("encoding"). It combines deep encoder
and decoder models to create a non-linear "bottleneck", while placing a prior and introducing a
sampling stage in the latent space. This has a regularising effect on the latent space, enforcing a
smooth space where points that are close together are similar in their data reconstructions. The
VAE also performs well as a generative model ("decoding"); samples can be taken from the
regularised latent space to generate, for example, "new" images of human faces [23]. The VAE
also improves on other non-linear representation-learning methods such as kernel variants of
ICA or tICA [24], where it is hard to extract meaning from the implicit kernel-space coordinates.
Furthermore, VAEs have been extensively studied and there are many improvements to the
basic model [25].

There have been many models which take the base structure of the VAE and employ some
kind of time-dependent model. [10] compares several of such models. From this model
selection, we base our model off the Kalman VAE (KVAE) [9], as it is convenient to have the
approximate VAE posterior split into a disentangled encoder posterior and sequence posterior,
separating the VAE inference task from the dynamical inference task. As we see later in the
report, this allows us to directly replace ("inform") the parameters of the dynamics model with
the solution to a PDE. This property arises from the factorisation of the joint likelihood, and is
not present in other models such as [14] or RNN-based models such as [4]. Note that although
[10] doesn’t report good training results for KVAE, we do not worry about its performance to
learn dynamics, as that is not our main task.

By defining encoder and decoder functions within the VAE probabilistic framework, the
VAE has access to a rich variety of neural network architectures to model highly non-linear and

complex dimensionality reduction and expansion functions. For example, in order to model
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observed image sequence data we can use convolutional neural networks (CNNs) to extract
spatially dependent features from the images.

Finally, generative adverserial networks [12] are popular alternatives for deep generative
modelling, and have been also used in physics-informed dynamic representation learning
[27, 28] . However, the complexity and computational cost of training GANSs is higher than in
feedforward network models such as VAEs, and can furthermore suffer from training instability
[28].

1.3.2 Spatiotemporal modelling in autoencoding models

Partial differential equations (PDE) are widely used to model physical systems in space and
time, such as in fluid dynamics or electromagnetism. These systems are most often solved
using numerical analysis, such as with the finite element method (FEM), since there is usually
no analytical solution. To create a framework in which we can combine governing equations
with observed data, [6] introduces a stochastic forcing term inside a PDE, creating a stochastic
PDE (SPDE) [30], which casts the problem as a probabilistic one. The SPDE also emits noisy
observations. Then, using their statistical FEM, they show that the task amounts to filtering
in a Bayesian framework, where the state-space model (SSM) transitions are governed by the
solved PDE.

There are many alternatives to modelling dynamical systems in autoencoder-based models.
For example, [19] models dynamics with a finite dimensional Koopman operator, and [29] sets
dynamics defined by an ordinary differential equation (ODE). We prefer the PDE approach,
due to the existing prevailing usage and flexibility of PDEs in wider science and engineering.
Furthermore, when we assume an underlying physical model, we do not want the burden of
having to also accurately learn the dynamics, as is the focus of much of the literature such as
[29]. The worry of failing to define sufficiently accurate dynamic models, as mentioned in [19],
is accounted by statFEM which can deal with model misspecification by modelling uncertainty
in the SPDE. We expect our model to perform much better than a model with a dynamical

model not informed by physics.

1.4 Related work

Here we review some existing, latent space models where some part of the dynamics is physics-
informed. [7] learns a transition matrix using a similar autoencoder construction. The only
physics-informed aspect of the model is in regularising the learnt transition matrix to be

Lyapunov-stable, that is, to keep inferred trajectories robust with respect to perturbations in
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Model Deep observa- Fully PI space Uncertainty in  Uncertainty in
tion mapping dynamics observations

[7] 4 X 4 4

[18] v v X v

[31] v 4 v X

statFEM [6] X v v v

statFEM-KVAE v 4 4 v

Table 1.1 Comparison of physics-informed (PI) dynamic latent space models

the initial conditions. With this being the only condition, this still means that learnt physical
dynamics could be completely different from the true dynamics. [18] simulates from a stipulated
PDE solution and tries to minimise the error between the VAE reconstruction and this, instead
of the original observations. This means that we cannot quantify uncertainty when assimilating
data into our physics model: we are assuming our PDE solution is the absolute ground truth.
This is of no use in, for example, digital twins applications. In [31], the decoder directly
models the terms of a stipulated stochastic differential equation (SDE) problem, while the
encoder takes observations as ground truth which it decodes through the SDE. As the authors
mention, this provides no possibility to model uncertainty in the observations: for our purpose,
we wish to model uncertainty as a combination of sensor observation uncertainty and model
stochasticity. Finally, the original statFEM [6, 11], assumes that the data-generating process
(DGP) is known, and is a noisy linear transformation onto the observation grid. Instead, we
want to model non-linear mappings from complex data such as images, and learn these.

See Table 1.1 for a summary of this discussion.



Chapter 2

Methods

In our problem we wish to learn latent, or low-dimensional, representations of multivariate,
time-sequence data. In the following, we discuss the Variational Autoencoder (VAE) method-
ology, which allows us to learn an encoder to achieve this task. We start with a detailed
introduction of the original VAE from [16] which does not evolve with time, as this will help in
deriving dynamic variants. Then we introduce the dynamical variant of the VAE which models
continuous-time data.

We then discuss how we can achieve a physics-informed model by using a stochastic partial
differential equation (SPDE) to place a prior on the latent space. This is solved by the statistical
finite elements method (statFEM), which discretises the PDE from continuous time and space.
This allows the incoming data to be incorporated with knowledge of the physical dynamical
model, in the following way: if we know that the data should have originated from a physical
law or equation, then we can set the parameters of the dynamical model to how we expect
the latent variables to evolve spatiotemporally according to physics. Then, the actual filtered
variables will combine time-evolving observations with presumed knowledge of the dynamics,

in a Bayesian manner.

2.1 The Variational Autoencoder

The VAE model, first introduced independently by [16] and [23], is a simple model in which
each data point or observation y is represented by a point in the latent space x, whose dimension
is typically smaller, giving a data "bottleneck". It builds a probabilistic model of the data
and the latent space in order to learn the relationship between these. This relationship can be
thought of a dimensionality reduction problem. We can represent the VAE model by writing

out the joint probability density function:
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p(y,x) = p(y | x)p(x)

We can now see the form of the generative, or decoder model: latent points are drawn from
the prior p(x), and then data is drawn from the likelihood p(y | x). This must be coupled with
the inference, encoder model of the VAE in order to infer the latent space points from the data,
requiring the posterior from Bayes rule:

p(y [X)p(x)

p(x|y) = oY)

However, as in many Bayesian machine learning methods, the naive decomposition of the
evidence p(y) = [ p(y | x) p(x)dx is difficult as it requires integrating over all possible latent
space configurations. Furthermore, in order to train the parameters, it is desirable to use and
maximise the evidence p(y) as the training criterion. The VAE solves this by introducing
an approximate posterior g (X | y) from the variational family ¢ which is often taken to be
Gaussian. Then the evidence can now be decomposed using variational inference (VI), and
the parameters ¢ are to be learned. We bear this derivation in mind when we move onto the
dynamical model in Section 2.2.2.

y,X)

log p(y) = log / p(y,x)dx = log / %% (x| y)dx

> [ go(x | y)1og %dx:ﬂw(w @1

where the last line is due to Jensen’s inequality. Equation (2.1) shows that we can maximise
the log evidence by maximising the Evidence Lower Bound (ELBO) of the data; see [16] for a
full discussion. We denote the parameters of the likelihood distribution as 6 since these are
unknown so are also to be learned. However, since we are still integrating over dx, why is this
decomposition useful? Using the definition of conditional probability, we see that, in a vanilla
VAE, we can further decompose the ELBO as

ELBO(9,6) = Ey, (xy)[logpe(y | X)] — Dxr(gs (x| ¥) || px(x)) (2.2)
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where Dky (- || ) is the Kullback-Leibler divergence of two distributions. The first term is
called the negative "reconstruction loss" and the second is called the "regularisation" for reasons
below. This decomposition has let us rewrite the integration as a sum of expectations which
can be estimated easily as described in Section 2.1.1. In addition, this type of decomposition

will be equally useful when we describe the dynamic variant of the VAE.

2.1.1 The VAE algorithm

We can now describe the VAE algorithm. First, the ith data point from the nth minibatch
is passed through a randomly initialised encoder neural network dy (-) with parameters ¢ to
output the parameters of the approximate posterior. A sample X; ~ g4 (X; | y;) is drawn from
this approximate posterior, encoding the data point onto the latent space. Then X; is passed
through a similar decoder neural network dg(-) with parameters 6 to generate a reconstruction
y; according to the likelihood pg(y; | x). We discuss the neural network designs in Section 2.4.
Note that this also forces the learnt encoding function to be invertible. Next a Monte Carlo
estimate of the ELBO is calculated; since each observation y; is uniquely mapped to a point x;
in latent space, we can further decompose the ELBO as a sum of ELBOs for each i, allowing

us to use stochastic minibatch gradient ascent on the ELBO:

1 M
ELBO ¢7 IOgPe Yi ‘ X; ] DKL((M)(X | Y) H px(x)) (2.3)

[:

ey

where M is the minibatch size. It is common to let the posterior, prior and likelihood to all

take Gaussian forms:

a9 (i | yi) = A (xi3 g (vi), diag(05 (¥4))) (2.4
px(xi) = A (x;;0,1) (2.5)
po(yi | Xi) = A (yi: o (x;),diag(05(x;))) (2.6)

where the encoder neural network dy (-) = (U (), G¢2()) and the decoder neural network
do(-) = Ma(-),03(-). Then the loss function per minibatch is the negative ELBO, which
becomes:
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M D
Z(9,6:y) : Zi [H)’i —§ill*— %dzl (1 +log[o; (yi)]a — [0 (vi)la + [Hs (Yi)]d>] 2.7)
Mz -

Here we can clearly see that minimising the loss equates to both minimising the recon-
struction error between the original and reconstructed data vectors, and regularising the learnt
posterior distribution towards the prior, creating a meaningful latent space; the encoded vari-
ables are forced to seem distributed as a Gaussian. We see in later models that we can choose
the prior differently to encode more meaningful representations. Finally, the parameters (¢, 0)
are backpropagated using the stochastic gradients. This is called end-to-end training of the

neural network parameters.

2.1.2 Sampling from the posterior

Following [16], we write the sampling stage of the posterior X; ~ g (x | y;) in the stochastic
form X; = u + o€ where € ~ .47(0, 1). This lets the Monte Carlo estimate of the expectation
with respect to the posterior E, 5 (x1y) [f(x)] be differentiable, which is necessary for training.

See [16] for a proof of this "reparameterization trick".

2.2 Dynamic Variational Autoencoder

To introduce this model, we first define the dynamic model in which the latent variables are
evolving with time. Then we introduce the probabilistic model to learn the mapping from the
data to the latent space which is analogous to the standard VAE. Similarly, we decompose the

joint to show how the model is trained.

2.2.1 State space model

As mentioned in Section 1.3.2, we assume a continuous linear time-evolving model for the
latent space. We let latent states be u that evolve linearly with parameters A and Gaussian noise
and emit pseudo-observations x also linearly with parameters v and Gaussian noise. That is,

we have a linear Gaussian state space model (LGSSM):

pa(u | u_y) = A (u;Fau_1,Q) (2.8)
Pv(Xt | Ut—l) = </V(Xt§cvut;R) (2.9)
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where Equation (2.8) is the dynamics model and Equation (2.9) is the pseudo-observation
model. If we do not fix the model parameters F 5, Cy, we can set these parameters to be jointly
learned by the neural network training as in [9], and Q, R are to be chosen. We consider this
case in experiments on the KVAE. Eventually, as we will see in Section 2.3.3, in our model, the
transition parameters F, Q will be fixed by the physics-informed nature of our model, and the

emission parameters Cy, R are to be chosen.

2.2.2 Probabilistic model

The dynamic VAE follows from the standard VAE, except our latent states are now u and each
data point is a time sequence over {1 : T}, as presented in [9]. Recall our entire probabilistic

model,

w | u_g ~ pau |u_g) (Transition)
X; | uy ~ py(x | ) (Pseudo-observation)
Yi | X ~ po(y: | X¢) (Observation)

for > 1 and pu(u; | wg) := p(u;), where this initial condition depends on the dataset
at hand. As above, we need the evidence of the data over all time steps, which follows the

derivation in Equation (2.1) except we also need to marginalise over the latent spaces uy.7:

log p(yi.7) :10g/P(XLT,ULT,Y1:T)dX1:lel1:T,

X1:.7,U1:7,¥Y1:T
= log/p( )6](“1:T7X1:T|Y1:T)dX1:Td111:T,
q(u11T7XlZT‘yl:T)

X1:.7,U1:7,¥1:
2/(](111:T,X1:TIY1:T)10gp( 2L Y T)Xm:TdulzT;

g(ar.r,X1.7|y1:7)
po(Yi.r|X1.7) py (X1.7ur.7) pa(ur.r)

dxj.7duy.r
g(uy.r, X1.7|y1:7)

:/Cl(ulsTaXl:Tb'l:T)lOg

T
po(Yi:7|X1:7) pyv (X1.7[ur.7) pa(Urr)
= [ pav(uir|xer) | |90 (X |y:) log dx.rduy.r
/ ,Ul pav(rrxer) [T o (Xe|yr)

(2.10)

o pv(XlzT\ulzT)pA(ulzT)”
pav(urr|Xer)

Do <YI:T‘X1:T)
g¢ (X1.7|y1.7)

:EQ¢(X1:T|YI:T) [ Ly (uirlxir)

= ELBO(6,9,A,V)
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where in Equation (2.10) we have substituted in our variational family for the posterior,

T
q(ur.r,X1.7|yrr) = pav(urr|Xir) H (X¢[yr)-

pav(urr|xp.7) is called the filtering distribution and depends on the SSM dynamics,
hence why we subscript by both the transition and emission parameters. We describe how
to compute it in Section 2.2.4. g4 (X;|y;) is the analogue to the approximate posterior in the
original VAE in Section 2.1, where time steps are independent. As before, the expectations can
be computed using a Monte Carlo estimate using samples drawn from the inference network
approximate posterior Xi.7 ~ g¢ (x1.7|y1:7) and samples drawn from the exact filtering posterior
1.7 ~ pav(ui.7[X1.7). The stochastic ELBO is then

M
ELBO(6,¢,A,V) Z log pe (y1.7.i|X1.7,i) —logqe (Xi.7.i|y1.7,1)+

i) Flogpa(tiyr;) —logpa,y (tr7i|Xi.7)] (2.11)

=1
log py (i

2.2.3 Overall training algorithm

The DVAE algorithm is an extension of the original VAE described in Section 2.1. For each
minibatch n:

* Pass each ith data point y;.7; in the minibatch through the encoder neural network ¢ to

obtain posterior gy (X1.7|y1.7,i)-
* Draw sample Xi.7; ~ q¢ (X1.7|y1:7,)
* Pass X;.7; through decoder neural network 6 to obtain reconstructions §i.7;.

* For fixed A, Vv, pass X;.7; through "stochastic filter" (as in Section 2.2.4) to obtain the
filtering posterior distribution, and draw samples @i1.7; ~ pa v (ui.7 |i1;T7,-). Note that in
our experiments we also use the mean of this distribution, ;.7 ; to visualise the "latent
space" variables corresponding to the observations.

* Construct loss used for stochastic gradient descent, which is the negative ELBO from
Equation (2.11).

* Update parameters (¢, 0) using stochastic gradients. If learning the dynamics too, as we

will do in Section 3.2, also update parameters (A, V) using stochastic gradients.
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2.2.4 Kalman Filter

Since, from Section 2.2.1, we have assumed a linear Gaussian SSM, our filtering posterior
PA,v(ur.7|X1.7) can be calculated in closed form as a Gaussian distribution using the Kalman
Filter recursion equations. Furthermore, since, in our setup, we can do offline inference, we
can use the Kalman Smoother [22] which propagates in a similar fashion backwards in time, to
achieve smoother results. We do not repeat here the Kalman filtering or smoothing equations
since they are considered classical; see [20] for an introduction.

Intuitively, the purpose of this stochastic filter is to combine, in a Bayesian sense, incoming
observations with the prior knowledge of the latent SSM distributions to obtain the latent
posteriors.

2.3 Towards physics-informed dynamic latent spaces

So far, we have set the spatiotemporal dynamics of the latent space to vary linearly with
parameters A with Gaussian noise, from Equation (2.8), and we have inferred the latent
variables in this SSM given data using a Kalman Filter available in closed form. In our problem,
we are given the physical dynamics that governs the latent space variables, and we wish to set
A = {Fx} which embodies the discrete dynamics which govern the latent space.

As a simple example, consider a situation in which the dynamics of the latent space
(wy,)1,>0.1>0 should represent discrete noisy 2D circular motion, where the noise is Gaussian

and uncorrelated. Then the discrete-time dynamics can be expressed as

A
e

where € ~ 4(0,I,42), @ is constant and A, =1, —t,,_; is the time discretisation constant,

)

(1 .
u COSXx —SInx
Ug, -

sinx CcoOSx

1
1

+Qe, Rot(x) = [ ] (2.12)

fixed for every n. Then we can set Fp = Rot(wA;),Q = ¢I in Equation (2.8) which sets our
prior knowledge of the dynamics.
In the following sections we consider similar scenarios in which physics can be represented

with linear stochastic partial differential equations (SPDEs).

2.3.1 Stochastic Partial Differential Equations

We assume that the spatiotemporal latent space process (u;);>0 can be described by a continuous

linear spatiotemporal SPDE of arbitrary order, that is, from [6, Section A.2]:
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dut+Lau=f+& E~GP0,k(x,x) - 8(—1)) (2.13)

where u 1= u(x,t), f := f(x),x € Q C RY ¢t € [0,T], Ly is any order linear spatial differential
operator, and d; is any linear time differential operator. The stochastic forcing term & is
modelled as a zero-mean Gaussian process (GP), which can be seen as an infinite-dimensional
noise term, and induces a probability measure over the solution space. For simplicity, the
covariance operator of the GP is chosen to be separable: white noise in time, and governed
spatially by k(-,-). For example, two forms of Equation (2.13) which are of relevance are given
below where d = 1. We study the boundary and initial conditions in experiments in Section
3.3.1.

* The 1D wave equation, where c is the wave speed

9?2 9?2
PRl A 19

We study this equation in detail in our experiments.
* The 1D heat equation, where « is the thermal diffusivity

du %u

In this model, as in Equation (2.9), the latent space u emits pseudo-observations x linearly,
which is the same data-generating process as studied in [6].

2.3.2 Solving SPDEs with statFEM

Now, given the above equations, we wish to solve the SPDEs to obtain a probabilistic forward
transition model of the latent variables in discrete space and time. The statistical finite elements
method [6] allows us to proceed. Firstly, following classical finite elements theory, we discretise
the domain x. We consider solutions « in an infinite-dimensional Sobolev space with basis
{y;}; and multiply the SPDE by test functions v from the same space to obtain the weak form
of the SPDE. We then project u and v onto finite-dimensional subsets of the basis y to obtain
finite elements uy,,v,. The construction of the finite element mesh on which these functions
are defined is described in Section 3.3.1. This gives a stochastic ODE in terms of the finite-
dimensional time-varying spatial vector u(z) = (u1(t),u2(¢),...)T = (u(x1,t),u(x2,1),...)7:
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Mdu + A udr = bdr +dj, (2.16)

where M, A, b are finite-dimensional matrices generated from finite elements, and can
be computed using a numerical PDE solver program. The derivation follows [6]. B, is a
Brownian motion process with diffusion matrix G, where G depends on (-, -). For simplicity,
we take k(-,-) = B2 = 0.05% and use the lumped approximation described in [2], which gives
G = diag({G;i}),Gii = B> ¥ ; M;j.

Next, we discretise time using any discretisation method to obtain u, :=u;, = u(n4;) in

terms of the previous u,_. For example, with explicit Euler discretisation, we obtain

M(w,—uw,_ 1) +AAu, | =Ab+e, 1, €.~ A(0,AG) 2.17)

Then, since the discretised equation still contains a stochastic term, we can solve for the

transition model

pA(Us U, 1) = A (0 Fau, | +£,Q) (2.18)

Fo=1-AM"'A (2.19)
f=AM'b

Q=AM'GM ' (2.20)

Alternative discretisation methods are presented in Appendix A.1. Empirically we find that

the Crank-Nicholson method provides the best stability.

2.3.3 The statFEM-KVAE model

From above, the solution to the SPDE governing the latent space with the given assumptions
yields a Gaussian transition distribution. In this project we only consider scenarios where f = 0,
so the solution is the exact form of the LGSSM in Equation (2.8). We can therefore "drop in"
the parameters F 5, Q from this solution when we are performing inference in the dynamic VAE,
and use the algorithm from Section 2.2.3 to train. The ELBO terms in Equation (2.11) are as

follows, where we drop the subscript i for clarity:

s logpe(yi.r|%1.7) = ly1.r — $1.711°
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logqy (X1.7|y1.7) = log A (X1.75 U (YI:T)adiag(G¢%<Y1:T))>

log py (X1.7|dy.7) =log A (X1.7; Cyliy.7, R)

log pa (7)) = XL, log A (@, Fatll;_1,Q) 4 log A (iy; ty,q11)

log pa v (1.7 |X1.7) following the Kalman posterior in Section 2.2.4.

2.3.4 Learning the wave speed

One further addition to the model is learning certain parameters of the PDE from data if they
are not specified. For example, in the wave equation example, if the wave speed ¢ is unknown,
we can factor out ¢ while solving the PDE and set it as a learnable parameter. First, since the
differential operator in the wave equation example Ly = —czaa—xzz, we can replace A with cAp
in the calculation of Fy, where A, is computed with ¢ = 1. Next, we set ¢ as a parameter to be
learned during end-to-end training of the neural networks.

2.4 Encoder-decoder design

As mentioned in Section 2.1.1, the encoder and decoder functions define respectively the
dimensionality reduction and dimensionality expansion functions dy(-),dg(-). Specifically,
the encoder function takes high-dimensional data samples and produces a lower rank latent
representation, and the decoder function takes latent samples and produces original-dimension
reconstructions of the data. As with all autoencoder models, we use neural networks to model
these functions. Neural networks allow us to model highly non-linear transformations, train
parameters using backpropagation and provide good generalisation properties. There is a huge
variety of neural networks of varying complexity to model image data.

In this project, the multi-layer perceptron (MLP) and the convolutional neural network
(CNN) are both studied. We only consider data that consists of grayscale images in (0, 1] or
sequences of such images. The networks must be designed with the following requirements:
the encoder output iy, log Gq% is required to take any value, while the decoder output ¥ is
required to be in (0, 1]. In the below sections, we assume 32 x 32 images (i.e. dimension 1024)
and pseudo-observations of dimension 32. For simplicity, we don’t use additional modern
techniques such as dropout or batch normalisation, since we note that generalisation results are

already quite good.
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2.4.1 Multilayer Perceptron

An MLP is the simplest form of modern feedforward artificial neural network and consists solely
of fully-connected layers and non-linear activation functions. Example MLPs used for encoding
and decoding are described in Tables 2.1 and 2.2. As a special case, if fi 5, f1,0,/2,1 /2,0
are chosen to be identity activation functions then the networks just become simple linear
transformations. As an example MLP for use in the VAE, we take f1 5, />, as ReLU, fi, as
identity, and f> , as a Sigmoid.

Layer Activation dimin dim out
FC  fix() 1024 1024
FC fi.0(4) 1024 32

Table 2.1 MLP with a single hidden layer for dimensionality reduction. Two of these are
needed: one that outputs the mean and one for the variance u,log 2.

Layer Activation dimin dim out
FC  fou(") 32 32
FC  f,(") 32 1024
Table 2.2 MLP with a single hidden layer for dimensionality expansion.

2.4.2 Convolutional Neural Network

A CNN contains convolutional layers to extract spatial dependencies from a 2D image, rather
than from a flattened vector for a MLP. A CNN can be seen as a series of downsampling steps
to reduce the dimensionality of the data. A fully-connected layer can be appended to push the
extracted features into the correct size output vectors. For the decoder, we use an equivalent
architecture but with transposed convolutional layers to upsample from the latent space to the
reconstruction output. Examples are shown in Tables 2.3 and 2.4. Activation functions are

same as in Section 2.4.1.
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Layer Activation dimin dimout channels
Conv(k=3,5s=2) ReLU 32x32 15x15 32
Conv(k=3,5s=2) ReLU 15x15 7Tx7 32
Conv(k=3,s=2) ReLU Tx7 3x3 32
Flatten 3%3 288 1
FC J1.0(%) 288 32

Table 2.3 CNN with 3 hidden convolutional layers for dimensionality reduction, where £ is
the kernel size and s is the stride. The input data has one channel (grayscale). The final FC is
repeated for outputting both the 32d vectors i, log 2.

Layer Activation dimin dimout channels
FC Identity 32 288

Unflatten 288 3x3 32
ConvT(k=3,5s=2) RelLU 3x3 Tx7 32
ConvT(k=3,5s =2) ReLU Tx7 15x15 32
ConvT(k=3,s=2,p=1) ReLU I5x15 32x32 32
ConvT(k=1,s=1) fr.0(%) 32x32 32x32 1

Table 2.4 CNN with 4 hidden transposed convolutional layers for upsampling, where p is output

padding.



Chapter 3
Experiments

We report experiments that have been designed to evaluate the models discussed in Section 2.
Results of the experiments are reported in Section 4. Each of the following experimental setups
builds upon previous ones, unless specified. All experimental code is in the private repository

https://github.com/Andrewwango/statfem-vae; please request access.

3.1 Experiment: the static VAE

This experiment tests the use of the most basic standard, non-dynamic VAE of Section 2.1. We
want to show that the VAE gives a meaningful latent space. A meaningful latent space means
that data points that are spatially close together in the observation space will be close together
in the latent space. This means that if we sample a point in the latent space near given points,
we should be able to generate new data that looks indistinguishable from the training data.

In this experimental setup, the encoder and decoder neural networks are CNNs as per
Section 2.4.2. We test using different latent space dimensions to show the effect of the VAE
"bottleneck".

3.1.1 Datasets

First, we evaluate the VAE on the MNIST dataset as was done by [16]. We use a subset of 5000
training and 1000 test images of handwritten digits from the MNIST dataset. Each image is
28 x 28 binary pixels € {0, 1} giving an observation dimension of 784. Since this is not the
original 32 x 32 as assumed in Section 2.4.2, we adjust the CNN design slightly, by adding
an extra output padding to the first transposed convolutional layer in the decoder in Table 2.4.

We throw away the annotated labels of the digits. We expect the VAE to learn a representation


https://github.com/Andrewwango/statfem-vae
https://github.com/Andrewwango/statfem-vae
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where the same digits are close together in a low-dimensional latent space, so that one can
smoothly interpolate between digits.

We also test with a very simple toy synthetic stationary ball dataset, as we will use this in
the next section where we move the ball around. This consists of a dataset of 5000 training
and 1000 test 32 x 32 binary images of a small white ball on a black background. Further to
above, we expect the VAE to learn how to detect the position of the ball, since similar images

represent the ball in each image being close to each other.

3.1.2 Evaluation

We report ELBO during training which shows convergence of the reconstruction and the
regularisation, and use this a metric to show success of the VAE training. The ELBO on the test
set is also used to measure generalisation of the model. We use two main visualisations that
show qualitatively the success of the trained VAE in modelling latent space representations,

which we will also use for evaluating subsequent experiments.

* Reconstruction: test images are forward passed through the model’s "bottleneck" and

compared to the original image;

* Latent manifold: samples are taken from the latent space and their decoded images
are compared based on their latent positions. We also study the effects of altering
the latent space dimension "bottleneck" on the ability of the VAE to produce efficient

representations and generate similar reconstructions.

3.1.3 Implementation details

The VAE is implemented in Python 3.9 using the PyTorch package, which allows easy imple-

mentation of neural network architectures and manipulation of vectors using PyTorch tensors.

3.1.4 Network training

The end-to-end neural network training is done using the Adam optimizer [15] using a learning
rate of = 2e—3 for 100 epochs. All training was done on a NVIDIA GeForce RTX 3090
GPU.
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3.2 Experiment: the dynamic VAE

Next we test the dynamic VAE from Section 2.2, firstly without any knowledge of the physics.
This is the situation in [9] - we do not presume any dynamics of the system. As discussed in
2.2.1, we set Q = 0.081,R = 0.03I and set Fy, Cy, to be learned at the same time as when ¢, 0
are learnt. In this experiment we are not interested in how well the model learns or resembles
the real dynamics of the data; we test this in the next section. Rather, we test if, with some given
dynamics, the model can infer some spatiotemporal structure in the data and have a meaningful
latent space. A meaningful latent space further requires that means that data sequences in the
observation space resembles an inferred trajectory in the latent space. We should also be able
to sample a point in the latent space and, assuming correct dynamics, generate new sequences
into the future.

Other hyperparameters are as follows: learning rate 8e—4, 60 epochs, and y; = 0,91 = 20
as the Kalman Filter initial state. We set the dimensions of the latent and pseudo-observation
spaces to 4, to simulate capturing x and y positions and velocities.

3.2.1 Dataset

We use a toy synthetic circular motion ball dataset similar to the static ball dataset in Section
3.1.1, except now each data sample is a sequence of 40 frames showing the white ball travelling
in circular motion about the centre at a fixed speed determined by the gravitational "force". The
dataset is created using the Pymunk 2D rigid-body physics animation package.

3.2.2 Evaluation

Again, we report the training and test ELBO during training. Like in the static case, after training
the model, we show the effectiveness of the VAE modelling by showing test image sequence
reconstruction and inferred latent space sequence. Note the visualised latent space sequence is
the mean of the Kalman posterior; furthermore, the covariance of the Kalman posterior can
be used for uncertainty quantification. To test the model’s dynamics and generation without
filtering (i.e. without seeing data), we also show results where we sample from the latent space,
forward propagate in time with the dynamics and decode the new sequence, which we call

long-term generation.
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3.3 Experiment: statFEM-KVAE with the wave equation

Next we use our full statFEM-KVAE model from Section 2.3.3, which is the same setup as
the previous experiment, but we define the SSM parameters according to a physics-informed
model, and use a synthetic dataset with the same dynamics. We train with 30 epochs, as since

the model already has the dynamics defined, convergence is almost guaranteed.

3.3.1 Physics

We would like to model data which we assume is generated from the 1D wave SPDE from
Equation (2.14), where f(x) = 0, ¢ = 4 and the spatial domain & = [0, 3] in the same units as
u. The PDE is solved numerically using the statFEM method following Section 2.3.2; spatial
discretisation is performed using the FEniCS package [17], to obtain the matrices M, A5. This
is done as follows: first, a FEniCS function space object is defined on a uniform mesh with
periodic boundary conditions. Then, trial and test function objects are taken from the function
space. The matrices concerned are assembled using these objects according to their definitions
in [6, Section A.2], where the the FEniCS assembling function takes care of the inner product.

We use the initial condition ug(x) = u(x,0) = exp (—(x —m)?/¢) ,£ =0.1,m = 0.5.

There are many choices to make regarding the PDE and its solution. We use and validate
the following parameters and methods for the solution of the PDE, summarised in Figure 3.1a.
We can validate them by forward simulating from the solution in the absence of noise, i.e.
u, = Fau,_, while varying these choices.

* We choose periodic boundary conditions on the domain boundary 9%, i.e. u(0,t) =
u(3,1), %(O,I) = %(3,1?). This is preferable to the Dirichlet constant boundary condi-
tions u(0,7) = u(3,¢) = 0 or other fixed boundary conditions, as this leads to the integrator

breaking down at the fixed boundaries; see Figure 3.1b.

* To perform time-discretisation, we use Crank-Nicholson discretisation, as it is an implicit
method: it allows for larger time-steps while preserving stability than with explicit Euler
[5]; see Figure 3.1c. See Appendix A.1 for the equations.

* For spatial discretisation, we choose n, = 32 finite elements spaced evenly across the
domain. Higher n, would increase computation cost of model training, whereas a lower

n, results in a loss in accuracy; see Figure 3.1d.

* For time-discretisation, we choose A; = 0.01. Similar conclusion as above: a higher A;

gives worse results; see Figure 3.1e.
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Finally we can calculate Fy,Q using Equations (2.19), (2.20). We fix Cy to I3,3, for
simplicity, so that both the pseudo-observation and latent spaces have dimension 32.

T

0
o

(a) Chosen scheme: periodic boundary conditions, Crank-Nicholson discretisation, n, = 32, A, = 0.01

\ qu

f T
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(b) Constant BCs (c) Explicit Euler discretisation
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(d)n,=38 (e) A, =0.08
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Fig. 3.1 Numerical solution to the wave PDE in the absence of noise for ¥ = [0,3],z € [0,...].
In the above, the y-axis is u(x,t), the x-axis is x in metres, and light to dark shade represents
forward time in seconds.
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3.3.2 Dataset

The synthetic dataset used consists of image sequences generated from the solution of the wave
PDE in the absence of noise. The dataset is constructed as follows, using the fact that the wave

PDE fortunately already has an analytical solution as follows:

u(x,0) =up(x—ct), uyg=-exp (—(x—m)z/é) (3.1

* Choose initial starting position m ~ %/(0,1). Generate 1D wave solution for time
t =[0,0.4) using Equation (3.1) giving a 32 x 40 matrix.

* Transform into 2D data sample 32 x 32 x 40 using either of the following methods:

— wave_BEV: copy 1D sample across 2nd dimension y, while shifting non-linearly
according to a cosine, where i, refers to the ith x element:
Iy < ix+Acos((iy+¢)f),A=3,f=0.1,¢ = 0. We note that the mapping from
this dataset back to the PDE should be easily learnt by a single linear matrix: it

simply needs to extract the 8th column. This dataset is therefore trivial.

— wave_side: for every x, fill all y with H(y —u(x,7)), where H is the step function, to
give a side-on view on the wave. We expect the inverse of this mapping should be
harder to learn, since the wave shape has been truly mapped to a spatially dependent
2D image. Since real-world datasets are likely to be complex, we use only this

dataset in our experiments.

* Save u(x,0) and set y; = u(x,0),q; = 0.0002 for every sample, showing confidence in
the Kalman Filter initial state, to aid training and identifiability of the solution. Despite
this being a unsupervised learning problem, having this sort of "ground-truth" in real-life

situations is acceptable, since it is often possible to measure an initial value directly.

* Repeat to obtain 5000 training and 1000 test samples.

See Figure 3.2 for an example data sample.

3.3.3 Evaluation

We will again use the reconstruction of test sequences to show training success. However, now
since we have set the dynamics, we expect the inferred latent space to not only be meaningful

but correct: the spatial shape and temporal evolution of the latent state sequence should match
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Fig. 3.2 Above: analytical solution u(x,t) to wave PDE. Middle: wave_BEV dataset generated
from the solution. Below: wave_side dataset.

up with the ground-truth generating the dataset, since both the dataset ("likelihood") and the
dynamics ("prior") are already matched. Furthermore, by propagating forward in time with the
PDE dynamics we expect to decode realistic, "new" generated reconstructions.

We will compare these results to the original KVAE, by applying the same dataset to the
"uninformed" model, where we don’t set the dynamical model and instead learn it. We still set
the initial state of the Kalman Filter to be the wave equation initial condition, i.e. the ground
truth, to help the model. Nevertheless, we expect the physics-informed model to perform better
in the ways described above.

Finally, evaluating the capability of uncertainty quantification and calibration of misspeci-
fied models with data is beyond the scope of this project. However, since the statFEM-KVAE
model is based on the data assimilation of the original statFEM, it follows naturally from the

results shown in [6].

3.4 Experimental difficulties

Throughout the project work, all of the above implementations and experiments took several
iterations to produce good results that matched what was expected from the theory. This was

because there were a lot of small implementation details to be dealt with, for example:

* The dynamic VAE methodology has many hyperparameters to set, for example the
emission noise, Kalman Filter initial state, transition noise to an extent, whose effect on

the results was often difficult to interpret;

* Of course, network training hyperparameters such as learning rate and batch size which

often had a big impact on training success;



3.4 Experimental difficulties 25

* My original KVAE implementation was inspired by attached code from the KVAE model
in [10], whose implementation was incorrect;

* The statFEM design choices, such as boundary conditions and time-discretisation meth-
ods (e.g. implicit Euler vs. Crank-Nicholson). This required a lot of experimenting, to
get good dynamics from the given PDE.

These above details were complicated by the fact that often, incorrect setting of the hyper-
parameters would result in decent, but not perfect results anyway, for example due to the good
capability of the CNN to model arbitrary non-linear transformations. See Section 4.3 for an
example.
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Results and discussion

4.1 Experiment: the static VAE

Figure 4.3 shows that reconstruction images become clearer and more faithful as the dimension
of the latent space increases. This is showing the effect of the VAE "bottleneck" - it becomes
increasingly harder to model all digits on a smaller dimension latent space. However, the
reconstructions are never perfect; artefacts can still be seen. The convergence of the ELBO in
Figure 4.1 during training supports this. Intuitively, the VAE can converge to a better ELBO if
it has more dimensions with which to model the data.

Figure 4.1 also shows the generalisation gap between training and test - checking that
this gap does not become too big allows us to ensure that we still have good generalisation
properties of the VAE.

Figure 4.2 shows the quality of the latent space learnt by the VAE in an unsupervised
manner, as was done by [16]. We see that the latent space interpolates smoothly between
digits and most digits are included in a tightly-packed neighbourhood. This regularising
property of the VAE comes from the way we have decomposed the likelihood in Equation (2.1).
Furthermore, Figure 4.4 shows that we have learnt a meaningful latent space, where images
with balls close together are close in the latent space. We also note that the VAE has learnt
an arbitrary orientation of the latent axes - the latent space seems to have primary axes on the
diagonals. This shows non-identifiability of the solution.

4.2 Experiment: the dynamic VAE

Figures 4.5, 4.6 shows the success of the KVAE training, where both the dynamics and the
encoder/decoder functions are to be learnt. However, the high quality reconstruction doesn’t
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Fig. 4.1 Loss function vs epoch during training of VAE model on MNIST dataset, for different
latent space dimensions: 2 (black), 4 (grey) and 8 (light grey).
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Fig. 4.2 2D latent space with latent samples taken uniformly over the space, labelled with the
images generated from passing the samples through the decoder from the model trained on
MNIST.



4.2 Experiment: the dynamic VAE 28

B0
O %%

(a) Latent space dimension 2 (b) Latent space dimension 4 (c) Latent space dimension 8

Fig. 4.3 In each of 4.3a, 4.3b, 4.3c, left: random MNIST test images. Right: reconstruction of
images after passing through model trained on MNIST.

"
L

Fig. 4.4 2D latent space with latent samples taken uniformly over the space, labelled with the
images generated from passing the samples through the decoder from the model trained on
stationary ball dataset.
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Fig. 4.5 Loss function vs epoch during training of dynamic KVAE model on circular motion
ball dataset.

say anything about the quality of the latent space. We see from the middle 2 rows of Figure
4.6 that the VAE has learnt a meaningful latent space - consecutive images in circular motion
result in the same pattern in the latent space. Less importantly, it seems like the circular motion
dynamics have been learnt too. However, this is not the focus of our experiments, as in our
statFEM-KVAE model, we eventually set the dynamics ourselves. We see that, although we can
discern circular motion from the 4D latent space visualisation, we cannot say which dimensions
represent the x- and y- positions and velocities, as we have only governed the latent space with
an isotropic Gaussian. Indeed we cannot specify that we want certain dimensions to represent
certain physical quantities without specifying the structure of the latent space.

The generation results in Figure 4.7 show that the circular motion dynamics have been
correctly learnt. More importantly, it shows that the generative model functions correctly - the

generated images show a ball following circular motion.

4.3 Experiment: statFEM-KVAE with the wave equation

In order to show the success of the statFEM-KVAE, we must show that the inferred latent
space from the encoder is not only meaningful, as in the previous experiments, but also correct.
This means that it should match the inherent dynamics that generated the data: the latent space
(posterior) values should represent a combination of the data series and the prior dynamics.
In Figure 4.9, we can clearly see that the inferred latent space evolves in a similar, but noisy
fashion to the generating PDE - a 1D wave equation with Gaussian initial shape. This shows

that we have assimilated the data likelihood and the physics prior; the latent space shows the
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Fig. 4.6 Above: Test sample from the circular motion ball dataset (every 8th image in the
series). Middle 2 rows: inferred 4D latent space using KVAE model trained on this dataset
with no informed physics - row 1 shows dimensions 1 and 2, row 2 shows dimensions 3 and 4.
Below: reconstruction through generative decoder.
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Fig. 4.7 Latent space forward generation. Above: first image: initial condition. Subsequently:
forward generation - every 2nd timestep from learned circular motion dynamics. Below: after
passing through generative decoder of the dynamic KVAE model.
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Fig. 4.9 Above: Test sample from the wave_side dataset (every 4th image in the series). Middle:
inferred 32D latent space u(¢) through time using statFEM-KVAE model trained on this dataset
with latent space "informed" by wave PDE. Each point on the x-axis is the xth component of
the 32D vector u(¢). Below: reconstruction through generative decoder.

posterior mean. The latent space starts as the initial condition p; that we have set, and gets
progressively noisier through time, representing a build up of uncertainty. It is important to set
U1 to the ground truth initial condition; otherwise, we lose identifiability of the solution. As
before, the reconstruction in Figure 4.9 and the ELBO (Figure 4.8) merely show that the model
has converged, not if the model is of any use.

The generation results in Figure 4.7 show that the generative model has learnt how to
generate the whole space of admissible PDE solutions for the given PDE setup. That is, passing
the propagated, new sequence through the generative model results in the expected wave images
at each time step.

Furthermore we can compare these results to the training of the KVAE without the statFEM-
informed latent space. Note that the data follows a linear DGP, so the uninformed KVAE
should still be able to learn some linear dynamics. In the inferred latent space in Figure 4.11,
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Fig. 4.10 Latent space forward generation. Above: first image: initial condition. Subsequently:

forward generation - every 4th timestep from statFEM solution of wave PDE. Below: after
passing through generative decoder of the statFEM-KVAE model.
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Fig. 4.11 Above: Test sample from the wave_side dataset (every 4th image in the series).
Middle: inferred 32D latent space u(¢) through time using uninformed KVAE model trained
on this dataset. Each point on the x-axis is the xth component of the 32D vector u(z). Below:
reconstruction through generative decoder.
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the filtered variables bear no resemblance to the wave shape, even though the reconstruction
images are very good. Because of the high performance of CNNs at approximating arbitrary
non-linear transformations, the VAE seems to have learnt an excellent reconstruction even
though the dynamics are not correct. This shows that having prior knowledge of the physics

governing the dataset is beneficial in estimating models.



Chapter 5
Conclusions

Through this report, we have developed a model to that allows one to estimate physics models
from real-world observed image data. We have achieved this using a generative probabilistic
framework that models both the physics-informed nature of the dynamics as well as the spatial
features of the image data. By approximating the posterior, we show that we can train the whole
model using the evidence lower bound, guaranteeing a monotonic increase of the log-likelihood.

The dynamic variational autoencoding strategy is introduced as a way to learn low-
dimensional representations of time sequence data. The Kalman VAE model is formulated
such that the VAE encoding/decoding functions are separated from the posterior sequence
inference. We also introduced the statistical finite element method to perform inference of a
stochastic PDE in a coherent statistical framework. Then, we show that, in the linear case, the
discrete dynamics of the KVAE latent space can be fixed to the discretised PDE solution given
by statFEM.

Our model can therefore be seen as a way to provide statFEM with a way of doing synthesis
of data and prior dynamics with deep encoder and decoders, in order to provide functionality
for real-world image data. This can also be seen as providing a physics-informed capability in
existing deep representational learning models.

In our experiments, we first show that the VAE and KVAE can estimate a meaningful latent
space from data: the encoder and decoder models map the data to an intuitive low-dimensional
space and vice versa. We show that each dimension of the inferred points in the latent space
smoothly encodes some feature of the data - for example, the shape of a handwritten digit, or
the position of the ball along a certain axis. However, since the latent space is only governed
by an "uninformed" isotropic Gaussian, we cannot, for example, specify that we want the 1st
and 2nd dimensions to respectively encode the moving ball’s x and y coordinates. With the
statFEM-KVAE model, the results show that we can learn the correct latent space mappings

to the actual PDE solution. We show that a physics-informed latent space performs much
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better than an uninformed one; the literature on learning governing dynamics is irrelevant if
we already assume the dynamics of a system. This means that when we assume or know the
underlying physics of a given dataset, as in a digital twins application, we can do the following
tasks described in Section 1:

* Estimation: if we have complex observed data that is assumed to follow a certain

spatiotemporal PDE, we can infer the PDE solution in the face of the data.

 Calibration: in the case of a filtering noisy, observed data in a misspecified model,
the filtered latent space combines the two sources of information and two sources of

uncertainty in a Bayesian manner. See [6, Figure 3] for a detailed example.

* Prediction: given the model trained with observed data, we can synthesise new image
sequences by propagating with the statFEM solution and generating images with the
decoder model.

* Uncertainty quantification: the data assimilation problem has been formulated in terms
of a stochastic filter, which is a probability distribution. Then, naturally, estimates of the
PDE solution have an associated variance (usually in a Gaussian distribution).

5.1 Future work
The basic statFEM-KVAE framework allows for plenty of future work, as follows:

* We have focussed on the linear case as this allows us to set the VAE’s linear Gaussian
state-space model parameters, and allows us to use the classical Kalman filter equations to
do the sequence posterior inference. We can estimate non-linear PDEs using a non-linear
state space and non-linear filtering techniques such as the extended Kalman filter, such
as for the Korteweg-de Vries equation as studied in [6] for modelling tidal waves.

* We have used easily intepretable datasets such as the side-on view of a wave, which
do not necessarily require particularly complex neural networks to extract the spatial
features - as an example, the simplest wave dataset did not even require a neural network.
However, real-world data may have a more complicated perspective or contain visual
aberrations or other non-linearities. Modern deep CNNs are extremely capable and can

learn highly non-linear and spatially complicated feature mappings.

* The general class of SPDEs that we have modelled means that we also have a high amount

of flexibility in modelling the noise in the data. For simplicity, in our experiments, our
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synthetic datasets have been noiseless. However, we can set prior belief in the type
of noise by setting the covariance kernel of the stochastic forcing term in the SPDE

appropriately.

* We have only studied 1D PDEs which have been discretised on a simple uniform finite
element mesh. However, since the finite element method has been proven to be effective
on complex multidimensional meshes, such as with triangular or hexagonal elements
particularly in the field of structural modelling, our method based on statFEM readily

extends to these cases.
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Appendix A

A.1 PDE discretisation methods

In the following, take e, ~ .4 (0,A,G).
The following time-discretisation methods result in the following equations,

 Explicit Euler: M(u, —u,_ 1) +AAu, | =Ab+e, i;
* Implicit Euler: M(u, —u,_1)+AAu, =Ab+e, ;;

¢ Crank-Nicholson: M(u, —u,_1)+AA(u,+u,_1)/2 =Ab+e, ;. Note this is also
an implicit method, which can also be solved by matrix inversion.

which can be solved in all cases to give the transition model, letting b = 0,

pa(unlu, 1) = A (u,;Fau,1,Q)
where Q = A,B~'GB™T, and Fy, B are, in each case,
» Explicit Euler: Fy=1-AM'A, B=M
« Implicit Euler: Fpr=(M+AA)'M, B=M+AA

e Crank-Nicholson: Fp=(M+AA/2) ' (M—AA/2), B=M+AA/2

A.2 Risk assessment retrospective

The risk assessment performed at the start of this project identified minimal risks to health,
including risks associated with computer working - trip hazard and repetitive strain injury. The
working environment was optimised to minimise these risks. If I were to retake this project, I
would assess the same risks as before.
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