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MLE has a closed form solution (Lauritzen 1996). In particular, for tabular potentials we have

ψ̂c(yc = k) =

∑N
i=1 I(yi,c = k)

N
(19.61)

and for Gaussian potentials, we have

µ̂c =

∑N
i=1 yic

N
, Σ̂c =

∑
i(yic − µ̂c)(xic − µ̂c)

T

N
(19.62)

By using conjugate priors, we can also easily compute the full posterior over the model pa-
rameters in the decomposable case, just as we did in the DGM case. See (Lauritzen 1996) for
details.

19.6 Conditional random fields (CRFs)

A conditional random field or CRF (Lafferty et al. 2001), sometimes a discriminative random
field (Kumar and Hebert 2003), is just a version of an MRF where all the clique potentials are
conditioned on input features:

p(y|x,w) =
1

Z(x,w)

∏

c

ψc(yc|x,w) (19.63)

A CRF can be thought of as a structured output extension of logistic regression. We will usually
assume a log-linear representation of the potentials:

ψc(yc|x,w) = exp(wT
c φ(x,yc)) (19.64)

where φ(x,yc) is a feature vector derived from the global inputs x and the local set of labels
yc. We will give some examples below which will make this notation clearer.

The advantage of a CRF over an MRF is analogous to the advantage of a discriminative
classifier over a generative classifier (see Section 8.6), namely, we don’t need to “waste resources”
modeling things that we always observe. Instead we can focus our attention on modeling what
we care about, namely the distribution of labels given the data.
Another important advantage of CRFs is that we can make the potentials (or factors) of the

model be data-dependent. For example, in image processing applications, we may “turn off” the
label smoothing between two neighboring nodes s and t if there is an observed discontinuity in
the image intensity between pixels s and t. Similarly, in natural language processing problems,
we can make the latent labels depend on global properties of the sentence, such as which
language it is written in. It is hard to incorporate global features into generative models.
The disadvantage of CRFs over MRFs is that they require labeled training data, and they

are slower to train, as we explain in Section 19.6.3. This is analogous to the strengths and
weaknesses of logistic regression vs naive Bayes, discussed in Section 8.6.

19.6.1 Chain-structured CRFs, MEMMs and the label-bias problem

The most widely used kind of CRF uses a chain-structured graph to model correlation amongst
neighboring labels. Such models are useful for a variety of sequence labeling tasks (see Sec-
tion 19.6.2).
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Figure 19.14 Various models for sequential data. (a) A generative directed HMM. (b) A discriminative
directed MEMM. (c) A discriminative undirected CRF.

Traditionally, HMMs (discussed in detail in Chapter 17) have been used for such tasks. These
are joint density models of the form

p(x,y|w) =
T∏

t=1

p(yt|yt−1,w)p(xt|yt,w) (19.65)

where we have dropped the initial p(y1) term for simplicity. See Figure 19.14(a). If we observe
both xt and yt for all t, it is very easy to train such models, using techniques described in
Section 17.5.1.
An HMM requires specifying a generative observation model, p(xt|yt,w), which can be

difficult. Furthemore, each xt is required to be local, since it is hard to define a generative
model for the whole stream of observations, x = x1:T .

An obvious way to make a discriminative version of an HMM is to “reverse the arrows” from
yt to xt, as in Figure 19.14(b). This defines a directed discriminative model of the form

p(y|x,w) =
∏

t

p(yt|yt−1,x,w) (19.66)

where x = (x1:T ,xg), xg are global features, and xt are features specific to node t. (This
partition into local and global is not necessary, but helps when comparing to HMMs.) This is
called a maximum entropy Markov model or MEMM (McCallum et al. 2000; Kakade et al.
2002).
An MEMM is simply a Markov chain in which the state transition probabilities are conditioned

on the input features. (It is therefore a special case of an input-output HMM, discussed in
Section 17.6.3.) This seems like the natural generalization of logistic regression to the structured-
output setting, but it suffers from a subtle problem known (rather obscurely) as the label bias
problem (Lafferty et al. 2001). The problem is that local features at time t do not influence states
prior to time t. This follows by examining the DAG, which shows that xt is d-separated from
yt−1 (and all earlier time points) by the v-structure at yt, which is a hidden child, thus blocking
the information flow.
To understand what this means in practice, consider the part of speech (POS) tagging task.

Suppose we see the word “banks”; this could be a verb (as in “he banks at BoA”), or a noun (as
in “the river banks were overflowing”). Locally the POS tag for the word is ambiguous. However,
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Figure 19.15 Example of handwritten letter recognition. In the word ’brace’, the ’r’ and the ’c’ look very
similar, but can be disambiguated using context. Source: (Taskar et al. 2003) . Used with kind permission
of Ben Taskar.

suppose that later in the sentence, we see the word “fishing”; this gives us enough context to
infer that the sense of “banks” is “river banks”. However, in an MEMM (unlike in an HMM and
CRF), the “fishing” evidence will not flow backwards, so we will not be able to disambiguate
“banks”.
Now consider a chain-structured CRF. This model has the form

p(y|x,w) =
1

Z(x,w)

T∏

t=1

ψ(yt|x,w)
T−1∏

t=1

ψ(yt, yt+1|x,w) (19.67)

From the graph in Figure 19.14(c), we see that the label bias problem no longer exists, since yt
does not block the information from xt from reaching other yt′ nodes.
The label bias problem in MEMMs occurs because directed models are locally normalized,

meaning each CPD sums to 1. By contrast, MRFs and CRFs are globally normalized, which
means that local factors do not need to sum to 1, since the partition function Z , which sums over
all joint configurations, will ensure the model defines a valid distribution. However, this solution
comes at a price: we do not get a valid probability distribution over y until we have seen
the whole sentence, since only then can we normalize over all configurations. Consequently,
CRFs are not as useful as DGMs (whether discriminative or generative) for online or real-time
inference. Furthermore, the fact that Z depends on all the nodes, and hence all their parameters,
makes CRFs much slower to train than DGMs, as we will see in Section 19.6.3.

19.6.2 Applications of CRFs

CRFs have been applied to many interesting problems; we give a representative sample below.
These applications illustrate several useful modeling tricks, and will also provide motivation for
some of the inference techniques we will discuss in Chapter 20.

19.6.2.1 Handwriting recognition

A natural application of CRFs is to classify hand-written digit strings, as illustrated in Figure 19.15.
The key observation is that locally a letter may be ambiguous, but by depending on the (un-
known) labels of one’s neighbors, it is possible to use context to reduce the error rate. Note
that the node potential, ψt(yt|xt), is often taken to be a probabilistic discriminative classifier,
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Figure 19.16 A CRF for joint POS tagging and NP segmentation. Source: Figure 4.E.1 of (Koller and
Friedman 2009). Used with kind permission of Daphne Koller.

such as a neural network or RVM, that is trained on isolated letters, and the edge potentials,
ψst(ys, yt), are often taken to be a language bigram model. Later we will discuss how to train
all the potentials jointly.

19.6.2.2 Noun phrase chunking

One common NLP task is noun phrase chunking, which refers to the task of segmenting a
sentence into its distinct noun phrases (NPs). This is a simple example of a technique known as
shallow parsing.
In more detail, we tag each word in the sentence with B (meaning beginning of a new NP), I

(meaning inside a NP), or O (meaning outside an NP). This is called BIO notation. For example,
in the following sentence, the NPs are marked with brackets:

B I O O O B I O B I I
(British Airways) rose after announcing (its withdrawl) from (the UAI deal)

(We need the B symbol so that we can distinguish I I, meaning two words within a single NP,
from B B, meaning two separate NPs.)
A standard approach to this problem would first convert the string of words into a string of

POS tags, and then convert the POS tags to a string of BIOs. However, such a pipeline method
can propagate errors. A more robust approach is to build a joint probabilistic model of the
form p(NP1:T , POS1:T |words1:T ). One way to do this is to use the CRF in Figure 19.16. The
connections between adjacent labels encode the probability of transitioning between the B, I
and O states, and can enforce constraints such as the fact that B must preceed I. The features
are usually hand engineered and include things like: does this word begin with a capital letter, is
this word followed by a full stop, is this word a noun, etc. Typically there are ∼ 1, 000−10, 000
features per node.
The number of features has minimal impact on the inference time, since the features are

observed and do not need to be summed over. (There is a small increase in the cost of
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Figure 19.17 A skip-chain CRF for named entity recognition. Source: Figure 4.E.1 of (Koller and Friedman
2009). Used with kind permission of Daphne Koller.

evaluating potential functions with many features, but this is usually negligible; if not, one can
use ℓ1 regularization to prune out irrelevant features.) However, the graph structure can have a
dramatic effect on inference time. The model in Figure 19.16 is tractable, since it is essentially a
“fat chain”, so we can use the forwards-backwards algorithm (Section 17.4.3) for exact inference
in O(T |POS|2|NP|2) time, where |POS| is the number of POS tags, and |NP| is the number
of NP tags. However, the seemingly similar graph in Figure 19.17, to be explained below, is
computationally intractable.

19.6.2.3 Named entity recognition

A task that is related to NP chunking is named entity extraction. Instead of just segmenting
out noun phrases, we can segment out phrases to do with people and locations. Similar
techniques are used to automatically populate your calendar from your email messages; this is
called information extraction.
A simple approach to this is to use a chain-structured CRF, but to expand the state space

from BIO to B-Per, I-Per, B-Loc, I-Loc, and Other. However, sometimes it is ambiguous whether
a word is a person, location, or something else. (Proper nouns are particularly difficult to deal
with because they belong to an open class, that is, there is an unbounded number of possible
names, unlike the set of nouns and verbs, which is large but essentially fixed.) We can get better
performance by considering long-range correlations between words. For example, we might add
a link between all occurrences of the same word, and force the word to have the same tag in
each occurence. (The same technique can also be helpful for resolving the identity of pronouns.)
This is known as a skip-chain CRF. See Figure 19.17 for an illustration.
We see that the graph structure itself changes depending on the input, which is an additional

advantage of CRFs over generative models. Unfortunately, inference in this model is gener-
ally more expensive than in a simple chain with local connections, for reasons explained in
Section 20.5.
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Figure 19.18 Illustration of a simple parse tree based on a context free grammar in Chomsky normal
form. The feature vector φ(x,y) = Ψ(x,y) counts the number of times each production rule was used.
Source: Figure 5.2 of (Altun et al. 2006) . Used with kind permission of Yasemin Altun.

19.6.2.4 Natural language parsing

A generalization of chain-structured models for language is to use probabilistic grammars. In
particular, a probabilistic context free grammar or PCFG is a set of re-write or production
rules of the form σ → σ′σ′′ or σ → x, where σ,σ′,σ′′ ∈ Σ are non-terminals (analogous to
parts of speech), and x ∈ X are terminals, i.e., words. See Figure 19.18 for an example. Each
such rule has an associated probability. The resulting model defines a probability distribution
over sequences of words. We can compute the probability of observing a particular sequence
x = x1 . . . xT by summing over all trees that generate it. This can be done in O(T 3) time
using the inside-outside algorithm; see e.g., (Jurafsky and Martin 2008; Manning and Schuetze
1999) for details.
PCFGs are generative models. It is possible to make discriminative versions which encode

the probability of a labeled tree, y, given a sequence of words, x, by using a CRF of the form
p(y|x) ∝ exp(wTφ(x,y)). For example, we might define φ(x,y) to count the number of
times each production rule was used (which is analogous to the number of state transitions in
a chain-structured model). See e.g., (Taskar et al. 2004) for details.

19.6.2.5 Hierarchical classification

Suppose we are performing multi-class classification, where we have a label taxonomy, which
groups the classes into a hierarchy. We can encode the position of y within this hierarchy by
defining a binary vector φ(y), where we turn on the bit for component y and for all its children.
This can be combined with input features φ(x) using a tensor product, φ(x, y) = φ(x)⊗φ(y).
See Figure 19.19 for an example.
This method is widely used for text classification, where manually constructed taxnomies

(such as the Open Directory Project at www.dmoz.org) are quite common. The benefit is that
information can be shared between the parameters for nearby categories, enabling generalization
across classes.
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⟨w,Ψ(x, 2)⟩ = ⟨w2,x⟩+ ⟨w6,x⟩+ ⟨w9,x⟩

Figure 19.19 Illustration of a simple label taxonomy, and how it can be used to compute a distributed
representation for the label for class 2. In this figure, φ(x) = x, φ(y = 2) = Λ(2), φ(x, y) is denoted
by Ψ(x, 2), and wTφ(x, y) is denoted by ⟨w,Ψ(x, 2)⟩. Source: Figure 5.1 of (Altun et al. 2006) . Used
with kind permission of Yasemin Altun.

19.6.2.6 Protein side-chain prediction

An interesting analog to the skip-chain model arises in the problem of predicting the structure
of protein side chains. Each residue in the side chain has 4 dihedral angles, which are usually
discretized into 3 values called rotamers. The goal is to predict this discrete sequence of angles,
y, from the discrete sequence of amino acids, x.
We can define an energy function E(x,y), where we include various pairwise interaction

terms between nearby residues (elements of the y vector). This energy is usually defined as a
weighted sum of individual energy terms, E(x,y|w) =

∑D
j=1 θjEj(x,y), where the Ej are

energy contribution due to various electrostatic charges, hydrogen bonding potentials, etc, and
w are the parameters of the model. See (Yanover et al. 2007) for details.

Given the model, we can compute the most probable side chain configuration using y∗ =
argminE(x,y|w). In general, this problem is NP-hard, depending on the nature of the graph
induced by the Ej terms, due to long-range connections between the variables. Nevertheless,
some special cases can be efficiently handled, using methods discussed in Section 22.6.

19.6.2.7 Stereo vision

Low-level vision problems are problems where the input is an image (or set of images), and
the output is a processed version of the image. In such cases, it is common to use 2d lattice-
structured models; the models are similar to Figure 19.9, except that the features can be global,
and are not generated by the model. We will assume a pairwise CRF.
A classic low-level vision problem is dense stereo reconstruction, where the goal is to

estimate the depth of every pixel given two images taken from slightly different angles. In this
section (based on (Sudderth and Freeman 2008)), we give a sketch of how a simple CRF can be
used to solve this task. See e.g., (Sun et al. 2003) for a more sophisticated model.
By using some standard preprocessing techniques, one can convert depth estimation into a
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problem of estimating the disparity ys between the pixel at location (is, js) in the left image
and the corresponding pixel at location (is + ys, js) in the right image. We typically assume
that corresponding pixels have similar intensity, so we define a local node potential of the form

ψs(ys|x) ∝ exp

{
− 1

2σ2
(xL(is, js) − xR(is + ys, js))

2
}

(19.68)

where xL is the left image and xR is the right image. This equation can be generalized to model
the intensity of small windows around each location. In highly textured regions, it is usually
possible to find the corresponding patch using cross correlation, but in regions of low texture,
there will be considerable ambiguity about the correct value of ys.
We can easily add a Gaussian prior on the edges of the MRF that encodes the assumption

that neighboring disparities ys, yt should be similar, as follows:

ψst(ys, yt) ∝ exp

(
− 1

2γ2
(ys − yt)

2

)
(19.69)

The resulting model is a Gaussian CRF.
However, using Gaussian edge-potentials will oversmooth the estimate, since this prior fails

to account for the occasional large changes in disparity that occur between neighboring pixels
which are on different sides of an occlusion boundary. One gets much better results using a
truncated Gaussian potential of the form

ψst(ys, yt) ∝ exp

{
− 1

2γ2
min

(
(ys − yt)

2, δ20
)}

(19.70)

where γ encodes the expected smoothness, and δ0 encodes the maximum penalty that will
be imposed if disparities are significantly different. This is called a discontinuity preserving
potential; note that such penalties are not convex. The local evidence potential can be made
robust in a similar way, in order to handle outliers due to specularities, occlusions, etc.
Figure 19.20 illustrates the difference between these two forms of prior. On the top left is an

image from the standard Middlebury stereo benchmark dataset (Scharstein and Szeliski 2002).
On the bottom left is the corresponding true disparity values. The remaining columns represent
the estimated disparity after 0, 1 and an “infinite” number of rounds of loopy belief propagation
(see Section 22.2), where by “infinite” we mean the results at convergence. The top row shows
the results using a Gaussian edge potential, and the bottom row shows the results using the
truncated potential. The latter is clearly better.
Unfortunately, performing inference with real-valued variables is computationally difficult,

unless the model is jointly Gaussian. Consequently, it is common to discretize the variables.
(For example, Figure 19.20(bottom) used 50 states.) The edge potentials still have the form given
in Equation 19.69. The resulting model is called a metric CRF, since the potentials form a
metric. 9 Inference in metric CRFs is more efficient than in CRFs where the discrete labels
have no natural ordering, as we explain in Section 22.6.3.3. See Section 22.6.4 for a comparison
of various approximate inference methods applied to low-level CRFs, and see (Blake et al. 2011;
Prince 2012) for more details on probabilistic models for computer vision.

9. A function f is said to be a metric if it satisfies the following three properties: Reflexivity: f(a, b) = 0 iff a = b;
Symmetry: f(a, b) = f(b, a); and Triangle inequality: f(a, b) + f(b, c) ≥ f(a, c). If f satisfies only the first two
properties, it is called a semi-metric.
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Figure 19.20 Illustration of belief propagation for stereo depth estimation. Left column: image and true
disparities. Remaining columns: initial estimate, estimate after 1 iteration, and estimate at convergence.
Top row: Gaussian edge potentials. Bottom row: robust edge potentials. Source: Figure 4 of (Sudderth and
Freeman 2008). Used with kind permission of Erik Sudderth.

19.6.3 CRF training

We can modify the gradient based optimization of MRFs described in Section 19.5.1 to the CRF
case in a straightforward way. In particular, the scaled log-likelihood becomes

ℓ(w) ! 1

N

∑

i

log p(yi|xi,w) =
1

N

∑

i

[
∑

c

wT
c φc(yi,xi) − logZ(w,xi)

]
(19.71)

and the gradient becomes

∂ℓ

∂wc
=

1

N

∑

i

[
φc(yi,xi) − ∂

∂wc
logZ(w,xi)

]
(19.72)

=
1

N

∑

i

[φc(yi,xi) − E [φc(y,xi)]] (19.73)

Note that we now have to perform inference for every single training case inside each gradient
step, which is O(N) times slower than the MRF case. This is because the partition function
depends on the inputs xi.
In most applications of CRFs (and some applications of MRFs), the size of the graph structure

can vary. Hence we need to use parameter tying to ensure we can define a distribution of
arbitrary size. In the pairwise case, we can write the model as follows:

p(y|x,w) =
1

Z(w,x)
exp
(
wTφ(y,x)

)
(19.74)
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where w = [wn,we] are the node and edge parameters, and

φ(y,x) ! [
∑

t

φt(yt,x),
∑

s∼t

φst(ys, yt,x)] (19.75)

are the summed node and edge features (these are the sufficient statistics). The gradient
expression is easily modified to handle this case.
In practice, it is important to use a prior/ regularization to prevent overfitting. If we use a

Gaussian prior, the new objective becomes

ℓ′(w) ! 1

N

∑

i

log p(yi|xi,w) − λ||w||22 (19.76)

It is simple to modify the gradient expression.
Alternatively, we can use ℓ1 regularization. For example, we could use ℓ1 for the edge weights

we to learn a sparse graph structure, and ℓ2 for the node weights wn, as in (Schmidt et al.
2008). In other words, the objective becomes

ℓ′(w) ! 1

N

∑

i

log p(yi|xi,w) − λ1||we||1 − λ2||wn||22 (19.77)

Unfortunately, the optimization algorithms are more complicated when we use ℓ1 (see Sec-
tion 13.4), although the problem is still convex.
To handle large datasets, we can use stochastic gradient descent (SGD), as described in

Section 8.5.2.
It is possible (and useful) to define CRFs with hidden variables, for example to allow for an

unknown alignment between the visible features and the hidden labels (see e.g., (Schnitzspan
et al. 2010)). In this case, the objective function is no longer convex. Nevertheless, we can find
a locally optimal ML or MAP parameter estimate using EM and/ or gradient methods.

19.7 Structural SVMs

We have seen that training a CRF requires inference, in order to compute the expected sufficient
statistics needed to evaluate the gradient. For certain models, computing a joint MAP estimate
of the states is provably simpler than computing marginals, as we discuss in Section 22.6. In this
section, we discuss a way to train structured output classifiers that that leverages the existence of
fast MAP solvers. (To avoid confusion with MAP estimation of parameters, we will often refer to
MAP estimation of states as decoding.) These methods are known as structural support vector
machines or SSVMs (Tsochantaridis et al. 2005). (There is also a very similar class of methods
known as max margin Markov networks or M3nets (Taskar et al. 2003); see Section 19.7.2 for
a discussion of the differences.)

19.7.1 SSVMs: a probabilistic view

In this book, we have mostly concentrated on fitting models using MAP parameter estimation,
i.e., by minimizing functions of the form

RMAP (w) = − log p(w) −
N∑

i=1

log p(yi|xi,w) (19.78)


