
606 Chapter 17. Markov and hidden Markov models

related tasks.
• Gene finding. Here xt represents the DNA nucleotides (A,C,G,T), and zt represents whether

we are inside a gene-coding region or not. See e.g., (Schweikerta et al. 2009) for details.
• Protein sequence alignment. Here xt represents an amino acid, and zt represents whether

this matches the latent consensus sequence at this location. This model is called a profile
HMM and is illustrated in Figure 17.8. The HMM has 3 states, called match, insert and delete.
If zt is a match state, then xt is equal to the t’th value of the consensus. If zt is an insert
state, then xt is generated from a uniform distribution that is unrelated to the consensus
sequence. If zt is a delete state, then xt = −. In this way, we can generate noisy copies of
the consensus sequence of different lengths. In Figure 17.8(a), the consensus is “AGC”, and
we see various versions of this below. A path through the state transition diagram, shown
in Figure 17.8(b), specifies how to align a sequence to the consensus, e.g., for the gnat, the
most probable path is D,D, I, I, I,M . This means we delete the A and G parts of the
consensus sequence, we insert 3 A’s, and then we match the final C. We can estimate the
model parameters by counting the number of such transitions, and the number of emissions
from each kind of state, as shown in Figure 17.8(c). See Section 17.5 for more information on
training an HMM, and (Durbin et al. 1998) for details on profile HMMs.

Note that for some of these tasks, conditional random fields, which are essentially discrimi-
native versions of HMMs, may be more suitable; see Chapter 19 for details.

17.4 Inference in HMMs

We now discuss how to infer the hidden state sequence of an HMM, assuming the parameters
are known. Exactly the same algorithms apply to other chain-structured graphical models, such
as chain CRFs (see Section 19.6.1). In Chapter 20, we generalize these methods to arbitrary
graphs. And in Section 17.5.2, we show how we can use the output of inference in the context
of parameter estimation.

17.4.1 Types of inference problems for temporal models

There are several different kinds of inferential tasks for an HMM (and SSM in general). To
illustrate the differences, we will consider an example called the occasionally dishonest casino,
from (Durbin et al. 1998). In this model, xt ∈ {1, 2, . . . , 6} represents which dice face shows
up, and zt represents the identity of the dice that is being used. Most of the time the casino
uses a fair dice, z = 1, but occasionally it switches to a loaded dice, z = 2, for a short period.
If z = 1 the observation distribution is a uniform multinoulli over the symbols {1, . . . , 6}. If
z = 2, the observation distribution is skewed towards face 6 (see Figure 17.9). If we sample from
this model, we may observe data such as the following:

Listing 17.1 Example output of casinoDemo
Rolls: 664153216162115234653214356634261655234232315142464156663246
Die: LLLLLLLLLLLLLLFFFFFFLLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFLLLLLLLL

Here “rolls” refers to the observed symbol and “die” refers to the hidden state (L is loaded and
F is fair). Thus we see that the model generates a sequence of symbols, but the statistics of the

17.4. Inference in HMMs 607

Figure 17.9 An HMM for the occasionally dishonest casino. The blue arrows visualize the state transition
diagram A. Based on (Durbin et al. 1998, p54).

0 50 100 150 200 250 300
0

0.5

1

roll number

p
(l
o
a
d
e
d
)

filtered

(a)

0 50 100 150 200 250 300
0

0.5

1

roll number

p
(l
o
a
d
e
d
)

smoothed

(b)

0 50 100 150 200 250 300
0

0.5

1

roll number

M
A

P
 s

ta
te

 (
0
=

fa
ir
,1

=
lo

a
d
e
d
)

Viterbi

(c)

Figure 17.10 Inference in the dishonest casino. Vertical gray bars denote the samples that we generated
using a loaded die. (a) Filtered estimate of probability of using a loaded dice. (b) Smoothed estimates. (c)
MAP trajectory. Figure generated by casinoDemo.

distribution changes abruptly every now and then. In a typical application, we just see the rolls
and want to infer which dice is being used. But there are different kinds of inference, which we
summarize below.

• Filtering means to compute the belief state p(zt|x1:t) online, or recursively, as the data
streams in. This is called “filtering” because it reduces the noise more than simply estimating
the hidden state using just the current estimate, p(zt|xt). We will see below that we can
perform filtering by simply applying Bayes rule in a sequential fashion. See Figure 17.10(a) for
an example.

• Smoothing means to compute p(zt|x1:T) offline, given all the evidence. See Figure 17.10(b)
for an example. By conditioning on past and future data, our uncertainty will be significantly
reduced. To understand this intuitively, consider a detective trying to figure out who com-
mitted a crime. As he moves through the crime scene, his uncertainty is high until he finds
the key clue; then he has an “aha” moment, his uncertainty is reduced, and all the previously
confusing observations are, in hindsight, easy to explain.

608 Chapter 17. Markov and hidden Markov models

Figure 17.11 The main kinds of inference for state-space models. The shaded region is the interval for
which we have data. The arrow represents the time step at which we want to perform inference. t is the
current time, T is the sequence length, ℓ is the lag and h is the prediction horizon. See text for details.

• Fixed lag smoothing is an interesting compromise between online and offline estimation; it
involves computing p(zt−ℓ|x1:t), where ℓ > 0 is called the lag. This gives better performance
than filtering, but incurs a slight delay. By changing the size of the lag, one can trade off
accuracy vs delay.

• Prediction Instead of predicting the past given the future, as in fixed lag smoothing, we
might want to predict the future given the past, i.e., to compute p(zt+h|x1:t), where h > 0
is called the prediction horizon. For example, suppose h = 2; then we have

p(zt+2|x1:t) =
∑

zt+1

∑

zt

p(zt+2|zt+1)p(zt+1|zt)p(zt|x1:t) (17.42)

It is straightforward to perform this computation: we just power up the transition matrix and
apply it to the current belief state. The quantity p(zt+h|x1:t) is a prediction about future
hidden states; it can be converted into a prediction about future observations using

p(xt+h|x1:t) =
∑

zt+h

p(xt+h|zt+h)p(zt+h|x1:t) (17.43)

This is the posterior predictive density, and can be used for time-series forecasting (see
(Fraser 2008) for details). See Figure 17.11 for a sketch of the relationship between filtering,
smoothing, and prediction.

• MAP estimation This means computing argmaxz1:T p(z1:T |x1:T), which is a most prob-
able state sequence. In the context of HMMs, this is known as Viterbi decoding (see

17.4. Inference in HMMs 609

Section 17.4.4). Figure 17.10 illustrates the difference between filtering, smoothing and MAP
decoding for the occasionally dishonest casino HMM. We see that the smoothed (offline)
estimate is indeed smoother than the filtered (online) estimate. If we threshold the estimates
at 0.5 and compare to the true sequence, we find that the filtered method makes 71 errors
out of 300, and the smoothed method makes 49/300; the MAP path makes 60/300 errors. It is
not surprising that smoothing makes fewer errors than Viterbi, since the optimal way to min-
imize bit-error rate is to threshold the posterior marginals (see Section 5.7.1.1). Nevertheless,
for some applications, we may prefer the Viterbi decoding, as we discuss in Section 17.4.4.

• Posterior samples If there is more than one plausible interpretation of the data, it can be
useful to sample from the posterior, z1:T ∼ p(z1:T |x1:T). These sample paths contain much
more information than the sequence of marginals computed by smoothing.

• Probability of the evidence We can compute the probability of the evidence, p(x1:T),
by summing up over all hidden paths, p(x1:T) =

∑
z1:T

p(z1:T ,x1:T). This can be used to
classify sequences (e.g., if the HMM is used as a class conditional density), for model-based
clustering, for anomaly detection, etc.

17.4.2 The forwards algorithm

We now describe how to recursively compute the filtered marginals, p(zt|x1:t) in an HMM.
The algorithm has two steps. First comes the prediction step, in which we compute the

one-step-ahead predictive density; this acts as the new prior for time t:

p(zt = j|x1:t−1) =
∑

i

p(zt = j|zt−1 = i)p(zt−1 = i|x1:t−1) (17.44)

Next comes the update step, in which we absorb the observed data from time t using Bayes
rule:

αt(j) ! p(zt = j|x1:t) = p(zt = j|xt,x1:t−1) (17.45)

=
1

Zt
p(xt|zt = j,✘✘✘x1:t−1)p(zt = j|x1:t−1) (17.46)

where the normalization constant is given by

Zt ! p(xt|x1:t−1) =
∑

j

p(zt = j|x1:t−1)p(xt|zt = j) (17.47)

This process is known as the predict-update cycle. The distribution p(zt|x1:t) is called the
(filtered) belief state at time t, and is a vector of K numbers, often denoted by αt. In matrix-
vector notation, we can write the update in the following simple form:

αt ∝ ψt ⊙ (ΨTαt−1) (17.48)

where ψt(j) = p(xt|zt = j) is the local evidence at time t, Ψ(i, j) = p(zt = j|zt−1 = i) is
the transition matrix, and u ⊙ v is the Hadamard product, representing elementwise vector
multiplication. See Algorithm 6 for the pseudo-code, and hmmFilter for some Matlab code.

610 Chapter 17. Markov and hidden Markov models

In addition to computing the hidden states, we can use this algorithm to compute the log
probability of the evidence:

log p(x1:T |θ) =
T∑

t=1

log p(xt|x1:t−1) =
T∑

t=1

logZt (17.49)

(We need to work in the log domain to avoid numerical underflow.)

Algorithm 17.1: Forwards algorithm

1 Input: Transition matrices ψ(i, j) = p(zt = j|zt−1 = i), local evidence vectors
ψt(j) = p(xt|zt = j), initial state distribution π(j) = p(z1 = j);

2 [α1, Z1] = normalize(ψ1 ⊙ π) ;
3 for t = 2 : T do
4 [αt, Zt] = normalize(ψt ⊙ (ΨTαt−1)) ;

5 Return α1:T and log p(y1:T) =
∑

t logZt;

6 Subroutine: [v, Z] = normalize(u) : Z =
∑

j uj ; vj = uj/Z ;

17.4.3 The forwards-backwards algorithm

In Section 17.4.2, we explained how to compute the filtered marginals p(zt = j|x1:t) using
online inference. We now discuss how to compute the smoothed marginals, p(zt = j|x1:T),
using offline inference.

17.4.3.1 Basic idea

The key decomposition relies on the fact that we can break the chain into two parts, the past
and the future, by conditioning on zt:

p(zt = j|x1:T) ∝ p(zt = j,xt+1:T |x1:t) ∝ p(zt = j|x1:t)p(xt+1:T |zt = j,✘✘x1:t) (17.50)

Let αt(j) ! p(zt = j|x1:t) be the filtered belief state as before. Also, define

βt(j) ! p(xt+1:T |zt = j) (17.51)

as the conditional likelihood of future evidence given that the hidden state at time t is j.
(Note that this is not a probability distribution over states, since it does not need to satisfy∑

j βt(j) = 1.) Finally, define

γt(j) ! p(zt = j|x1:T) (17.52)

as the desired smoothed posterior marginal. From Equation 17.50, we have

γt(j) ∝ αt(j)βt(j) (17.53)

17.4. Inference in HMMs 611

We have already described how to recursively compute the α’s in a left-to-right fashion in
Section 17.4.2. We now describe how to recursively compute the β’s in a right-to-left fashion. If
we have already computed βt, we can compute βt−1 as follows:

βt−1(i) = p(xt:T |zt−1 = i) (17.54)

=
∑

j

p(zt = j,xt,xt+1:T |zt−1 = i) (17.55)

=
∑

j

p(xt+1:T |zt = j,✘✘✘✘zt−1 = i,✚✚xt)p(zt = j,xt|zt−1 = i) (17.56)

=
∑

j

p(xt+1:T |zt = j)p(xt|zt = j,✘✘✘✘zt−1 = i)p(zt = j|zt−1 = i) (17.57)

=
∑

j

βt(j)ψt(j)ψ(i, j) (17.58)

We can write the resulting equation in matrix-vector form as

βt−1 = Ψ(ψt ⊙ βt) (17.59)

The base case is

βT (i) = p(xT+1:T |zT = i) = p(∅|zT = i) = 1 (17.60)

which is the probability of a non-event.
Having computed the forwards and backwards messages, we can combine them to compute

γt(j) ∝ αt(j)βt(j). The overall algorithm is known as the forwards-backwards algorithm.
The pseudo code is very similar to the forwards case; see hmmFwdBack for an implementation.
We can think of this algorithm as passing “messages” from left to right, and then from right

to left, and then combining them at each node. We will generalize this intuition in Section 20.2,
when we discuss belief propagation.

17.4.3.2 Two-slice smoothed marginals

When we estimate the parameters of the transition matrix using EM (see Section 17.5), we will
need to compute the expected number of transitions from state i to state j:

Nij =
T−1∑

t=1

E [I(zt = i, zt+1 = j)|x1:T] =
T−1∑

t=1

p(zt = i, zt+1 = j|x1:T) (17.61)

The term p(zt = i, zt+1 = j|x1:T) is called a (smoothed) two-slice marginal, and can be
computed as follows

ξt,t+1(i, j) ! p(zt = i, zt+1 = j|x1:T) (17.62)

∝ p(zt|x1:t)p(zt+1|zt,xt+1:T) (17.63)

∝ p(zt|x1:t)p(xt+1:T |zt, zt+1)p(zt+1|zt) (17.64)

∝ p(zt|x1:t)p(xt+1|zt+1)p(xt+2:T |zt+1)p(zt+1|zt) (17.65)

= αt(i)φt+1(j)βt+1(j)ψ(i, j) (17.66)

612 Chapter 17. Markov and hidden Markov models

In matrix-vector form, we have

ξt,t+1 ∝ Ψ⊙ (αt(φt+1 ⊙ βt+1)
T) (17.67)

For another interpretation of these equations, see Section 20.2.4.3.

17.4.3.3 Time and space complexity

It is clear that a straightforward implementation of FB takes O(K2T) time, since we must
perform a K × K matrix multiplication at each step. For some applications, such as speech
recognition, K is very large, so the O(K2) term becomes prohibitive. Fortunately, if the
transition matrix is sparse, we can reduce this substantially. For example, in a left-to-right
transition matrix, the algorithm takes O(TK) time.

In some cases, we can exploit special properties of the state space, even if the transition
matrix is not sparse. In particular, suppose the states represent a discretization of an underlying
continuous state-space, and the transition matrix has the form ψ(i, j) ∝ exp(−σ2|zi − zj |),
where zi is the continuous vector represented by state i. Then one can implement the forwards-
backwards algorithm in O(TK logK) time. This is very useful for models with large state
spaces. See Section 22.2.6.1 for details.
In some cases, the bottleneck is memory, not time. The expected sufficient statistics needed

by EM are
∑

t ξt−1,t(i, j); this takes constant space (independent of T); however, to compute
them, we need O(KT) working space, since we must store αt for t = 1, . . . , T until we do the
backwards pass. It is possible to devise a simple divide-and-conquer algorithm that reduces the
space complexity from O(KT) to O(K log T) at the cost of increasing the running time from
O(K2T) to O(K2T log T): see (Binder et al. 1997; Zweig and Padmanabhan 2000) for details.

17.4.4 The Viterbi algorithm

The Viterbi algorithm (Viterbi 1967) can be used to compute the most probable sequence of
states in a chain-structured graphical model, i.e., it can compute

z∗ = argmax
z1:T

p(z1:T |x1:T) (17.68)

This is equivalent to computing a shortest path through the trellis diagram in Figure 17.12,
where the nodes are possible states at each time step, and the node and edge weights are log
probabilities. That is, the weight of a path z1, z2, . . . , zT is given by

log π1(z1) + log φ1(z1) +
T∑

t=2

[logψ(zt−1, zt) + log φt(zt)] (17.69)

17.4.4.1 MAP vs MPE

Before discussing how the algorithm works, let us make one important remark: the (jointly) most
probable sequence of states is not necessarily the same as the sequence of (marginally) most probable
states. The former is given by Equation 17.68, and is what Viterbi computes, whereas the latter is
given by the maximizer of the posterior marginals or MPM:

ẑ = (argmax
z1

p(z1|x1:T), . . . , argmax
zT

p(zT |x1:T)) (17.70)

17.4. Inference in HMMs 613

Figure 17.12 The trellis of states vs time for a Markov chain. Based on (Rabiner 1989).

As a simple example of the difference, consider a chain with two time steps, defining the
following joint:

X1 = 0 X1 = 1
X2 = 0 0.04 0.3 0.34
X2 = 1 0.36 0.3 0.66

0.4 0.6

The joint MAP estimate is (0, 1), whereas the sequence of marginal MPMs is (1, 1).
The advantage of the joint MAP estimate is that is is always globally consistent. For example,

suppose we are performing speech recognition and someones says “recognize speech”. This
could be mis-heard as “wreck a nice beach”. Locally it may appear that “beach” is the most
probable interpretation of that particular window of sound, but when we add the requirement
that the data be explained by a single linguistically plausible path, this interpretation becomes
less likely.
On the other hand, the MPM estimates can be more robust (Marroquin et al. 1987). To see

why, note that in Viterbi, when we estimate zt, we “max out” the other variables:

z∗t = argmax
zt

max
z1:t−1,zt+1:T

p(z1:t−1, zt, zt+1:T |x1:T) (17.71)

whereas we when we use forwards-backwards, we sum out the other variables:

p(zt|x1:T) =
∑

z1:t−1,zt+1:T

p(z1:t−1, zt, zt+1:T |x1:T) (17.72)

This makes the MPM in Equation 17.70 more robust, since we estimate each node averaging over
its neighbors, rather than conditioning on a specific value of its neighbors.6

6. In general, we may want to mix max and sum. For example, consider a joint distribution where we observe

614 Chapter 17. Markov and hidden Markov models

17.4.4.2 Details of the algorithm

It is tempting to think that we can implement Viterbi by just replacing the sum-operator in
forwards-backwards with a max-operator. The former is called the sum-product, and the
latter the max-product algorithm. If there is a unique mode, running max-product and then
computing using Equation 17.70 will give the same result as using Equation 17.68 (Weiss and
Freeman 2001b), but in general, it can lead to incorrect results if there are multiple equally
probably joint assignments. The reasons is that each node breaks ties independently and hence
may do so in a manner that is inconsistent with its neighbors. The Viterbi algorithm is therefore
not quite as simple as replacing sum with max. In particular, the forwards pass does use max-
product, but the backwards pass uses a traceback procedure to recover the most probable path
through the trellis of states. Essentially, once zt picks its most probable state, the previous nodes
condition on this event, and therefore they will break ties consistently.
In more detail, define

δt(j) ! max
z1,...,zt−1

p(z1:t−1, zt = j|x1:t) (17.73)

This is the probability of ending up in state j at time t, given that we take the most probable
path. The key insight is that the most probable path to state j at time t must consist of the
most probable path to some other state i at time t − 1, followed by a transition from i to j.
Hence

δt(j) = max
i

δt−1(i)ψ(i, j)φt(j) (17.74)

We also keep track of the most likely previous state, for each possible state that we end up in:

at(j) = argmax
i

δt−1(i)ψ(i, j)φt(j) (17.75)

That is, at(j) tells us the most likely previous state on the most probable path to zt = j. We
initialize by setting

δ1(j) = πjφ1(j) (17.76)

and we terminate by computing the most probable final state z∗T :

z∗T = argmax
i

δT (i) (17.77)

We can then compute the most probable sequence of states using traceback:

z∗t = at+1(z
∗
t+1) (17.78)

As usual, we have to worry about numerical underflow. We are free to normalize the δt terms
at each step; this will not affect the maximum. However, unlike the forwards-backwards case,

v and we want to query q; let n be the remaining nuisance variables. We define the MAP estimate as x∗
q =

argmaxxq

∑
xn

p(xq ,xn|xv), where we max over xq and sum over xn . By contrast, we define the MPE or
most probable explanation as (x∗

q ,x
∗
n) = argmaxxq ,xn p(xq ,xn|xv), where we max over both xq and xn . This

terminology is due to (Pearl 1988), although it is not widely used outside the Bayes net literatire. Obviously MAP=MPE if
n = ∅. However, if n ̸= ∅, then summing out the nuisance variables can give different results than maxing them out.
Summing out nuisance variables is more sensible, but computationally harder, because of the need to combine max and
sum operations (Lerner and Parr 2001).

17.4. Inference in HMMs 615

(a) (b)

Figure 17.13 Illustration of Viterbi decoding in a simple HMM for speech recognition. (a) A 3-state HMM
for a single phone. We are visualizing the state transition diagram. We assume the observations have been
vector quantized into 7 possible symbols, C1, . . . , C7. Each state z1, z2, z3 has a different distribution over
these symbols. Based on Figure 15.20 of (Russell and Norvig 2002). (b) Illustration of the Viterbi algorithm
applied to this model, with data sequence C1, C3, C4, C6. The columns represent time, and the rows
represent states. An arrow from state i at t − 1 to state j at t is annotated with two numbers: the first
is the probability of the i → j transition, and the second is the probability of generating observation xt

from state j. The bold lines/ circles represent the most probable sequence of states. Based on Figure 24.27
of (Russell and Norvig 1995).

we can also easily work in the log domain. The key difference is that logmax = max log,
whereas log

∑
̸=
∑

log. Hence we can use

log δt(j) ! max
z1:t−1

log p(z1:t−1, zt = j|x1:t) (17.79)

= max
i

log δt−1(i) + logψ(i, j) + log φt(j) (17.80)

In the case of Gaussian observation models, this can result in a significant (constant factor)
speedup, since computing log p(xt|zt) can be much faster than computing p(xt|zt) for a high-
dimensional Gaussian. This is one reason why the Viterbi algorithm is widely used in the E step
of EM (Section 17.5.2) when training large speech recognition systems based on HMMs.

17.4.4.3 Example

Figure 17.13 gives a worked example of the Viterbi algorithm, based on (Russell et al. 1995).
Suppose we observe the discrete sequence of observations x1:4 = (C1, C3, C4, C6), representing
codebook entries in a vector-quantized version of a speech signal. The model starts in state
z1. The probability of generating C1 in z1 is 0.5, so we have δ1(1) = 0.5, and δ1(i) = 0 for
all other states. Next we can self-transition to z1 with probability 0.3, or transition to z2 with
proabability 0.7. If we end up in z1, the probability of generating C3 is 0.3; if we end up in z2,

616 Chapter 17. Markov and hidden Markov models

the probability of generating C3 is 0.2. Hence we have

δ2(1) = δ1(1)ψ(1, 1)φ2(1) = 0.5 · 0.3 · 0.3 = 0.045 (17.81)

δ2(2) = δ1(1)ψ(1, 2)φ2(2) = 0.5 · 0.7 · 0.2 = 0.07 (17.82)

Thus state 2 is more probable at t = 2; see the second column of Figure 17.13(b). In time step
3, we see that there are two paths into z2, from z1 and from z2. The bold arrow indicates that
the latter is more probable. Hence this is the only one we have to remember. The algorithm
continues in this way until we have reached the end of the sequence. One we have reached the
end, we can follow the black arrows back to recover the MAP path (which is 1,2,2,3).

17.4.4.4 Time and space complexity

The time complexity of Viterbi is clearly O(K2T) in general, and the space complexity
is O(KT), both the same as forwards-backwards. If the transition matrix has the form
ψ(i, j) ∝ exp(−σ2||zi − zj ||2), where zi is the continuous vector represented by state i, we
can implement Viterbi in O(TK) time, instead of O(TK logK) needed by forwards-backwards.
See Section 22.2.6.1 for details.

17.4.4.5 N-best list

The Viterbi algorithm returns one of the most probable paths. It can be extended to return the
top N paths (Schwarz and Chow 1990; Nilsson and Goldberger 2001). This is called the N-best
list. Once can then use a discriminative method to rerank the paths based on global features
derived from the fully observed state sequence (as well as the visible features). This technique
is widely used in speech recognition. For example, consider the sentence “recognize speech”. It
is possible that the most probable interpretation by the system of this acoustic signal is “wreck
a nice speech”, or maybe “wreck a nice beach”. Maybe the correct interpretation is much lower
down on the list. However, by using a re-ranking system, we may be able to improve the score
of the correct interpretation based on a more global context.
One problem with the N -best list is that often the top N paths are very similar to each other,

rather than representing qualitatively different interpretations of the data. Instead we might want
to generate a more diverse set of paths to more accurately represent posterior uncertainty. One
way to do this is to sample paths from the posterior, as we discuss below. For some other ways
to generate diverse MAP estimates, see e.g., (Yadollahpour et al. 2011; Kulesza and Taskar 2011).

17.4.5 Forwards filtering, backwards sampling

It is often useful to sample paths from the posterior:

zs1:T ∼ p(z1:T |x1:T) (17.83)

We can do this is as follow: run forwards backwards, to compute the two-slice smoothed posteri-
ors, p(zt−1,t|x1:T); next compute the conditionals p(zt|zt−1,x1:T) by normalizing; sample from
the initial pair of states, z∗1,2 ∼ p(z1,2|x1:T); finally, recursively sample z∗t ∼ p(zt|z∗t−1,x1:T).
Note that the above solution requires a forwards-backwards pass, and then an additional

forwards sampling pass. An alternative is to do the forwards pass, and then perform sampling

17.5. Learning for HMMs 617

in the backwards pass. The key insight into how to do this is that we can write the joint from
right to left using

p(z1:T |x1:T) = p(zT |x1:T)
1∏

t=T−1

p(zt|zt+1,x1:T) (17.84)

We can then sample zt given future sampled states using

zst ∼ p(zt|zt+1:T ,x1:T) = p(zt|zt+1,✘✘✘zt+2:T ,x1:t,✘✘✘xt+1:T) = p(zt|zst+1,x1:t) (17.85)

The sampling distribution is given by

p(zt = i|zt+1 = j,x1:t) = p(zt|zt+1,x1:t,✘✘✘xt+1) (17.86)

=
p(zt+1, zt|x1:t+1)

p(zt+1|x1:t+1)
(17.87)

∝ p(xt+1|zt+1,✚✚zt,✘✘x1:t)p(zt+1, zt|x1:t)

p(zt+1|x1:t+1)
(17.88)

=
p(xt+1|zt+1)p(zt+1|zt,✘✘x1:t)p(zt|x1:t)

p(zt+1|x1:t+1)
(17.89)

=
φt+1(j)ψ(i, j)αt(i)

αt+1(j)
(17.90)

The base case is

zsT ∼ p(zT = i|x1:T) = αT (i) (17.91)

This algorithm forms the basis of blocked-Gibbs sampling methods for parameter inference,
as we will see below.

17.5 Learning for HMMs

We now discuss how to estimate the parameters θ = (π,A,B), where π(i) = p(z1 = i) is
the initial state distribution, A(i, j) = p(zt = j|zt−1 = i) is the transition matrix, and B are
the parameters of the class-conditional densities p(xt|zt = j). We first consider the case where
z1:T is observed in the training set, and then the harder case where z1:T is hidden.

17.5.1 Training with fully observed data

If we observe the hidden state sequences, we can compute the MLEs for A and π exactly as in
Section 17.2.2.1. If we use a conjugate prior, we can also easily compute the posterior.
The details on how to estimate B depend on the form of the observation model. The

situation is identical to fitting a generative classifier. For example, if each state has a multinoulli
distribution associated with it, with parameters Bjl = p(Xt = l|zt = j), where l ∈ {1, . . . , L}
represents the observed symbol, the MLE is given by

B̂jl =
NX

jl

Nj
, NX

jl !
N∑

i=1

Ti∑

t=1

I(zi,t = j, xi,t = l) (17.92)

