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Abstract

Automatic vegetation mapping in dense forest areas is desirable for a number
of environmental reasons, allowing non-technical users and robots to efficiently
monitor local natural environments for better forest management. We propose
a computer vision model which quantifies videos taken from walking around a
forest to produce a vegetation score at each point. We show that this can be
done by efficiently training neural networks for depth estimation and semantic
segmentation to understand the forest image scenes.

We train and evaluate on a forest image dataset from the literature. The
model achieves high correlation with human-labelled vegetation scores on a sam-
ple test video and low error on the image networks on the validation set.

All code and experiments can be found on ©

1 Introduction

Vegetation mapping is an important task in many fields of practical local environmental
monitoring. Non-technical researchers and robots may wish to automatically quantify
vegetation in given hand or robot-recorded video scenes. This can be used to compare
vegetation levels from time to time in forest and other natural environments, or by
combining GPS data to produce vegetation heatmaps. Example applications are for
quantifying (de)forestation [1], natural damage such as by pests [2], and for environ-
mental regeneration [3]. We focus on face-forward head-height scenes of local forest
vegetation and not solutions using birds eye aerial imagery, as these can’t extract local
details in dense forest cover.

This removes the time-consuming and laborious need to manually quantify vegeta-
tion. Current methods are largely field-based and inefficient. [4] use quadrat sampling
at sparse locations and at the timescale of about twice a decade, to monitor forest con-
servation and rewilding efforts in the forest. This sort of technique involves calculating
a rough estimate of percentage cover using the Domin scale [5], and spatiotempo-
ral extrapolation to give an indicator of vegetation cover in the forest. Basic image
statistics-based methods also exist for specific datasets [6]. Methods such as Normal-
ized Difference Vegetation Index [7] rely on aerial imagery so are irrelevant here.

We develop a computer vision model to solve this robotics task. This consists
of a mathematical model to quantify the “vegetation levels” in an unstructured forest
scene, where object locations and sizes are not well-defined, unlike urban scenes. Then,
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given videos taken by a hand-held camera as one walks through forest paths or by an
autonomous robotic vehicle, our model detects and quantifies vegetation present per
frame to record the total vegetation presented during the video.

We train our model with a very low amount of labelled data using transfer learning
(TL), which leverages an image recognition network such as ResNet [8], pre-trained on
huge datasets of everyday images, to tune the network to our custom dataset. This
means that we need fewer images to train the model to a sufficient accuracy. Similarly,
our approach is easily applied to other similar areas such as monitoring of agricultural
crops, of small low-level shrubbery or protected species etc.

Finally, we assess the quality of our automated image-based vegetation quantifica-
tion method by comparing it to manual methods.

2 Model

Given an image at a time t, we consider the vegetation present in the vicinity Vt of
the current scene, denoted by the true vegetation index of the kth class V Ik,t, and

predicted by our model V̂ Ik,t.
Firstly we consider the vicinity to be all points in the scene that are, from a human

interpretation of the scene, close to the camera, i.e.

V = x, y : Dw(x, y||xc, yc) ≤ γw

where x, y are real world coordinates, xc, yc are the camera coordinates in the real
world, Dw(·||·) is a real world distance measurement, and γw is some distance threshold.

Then we create manual vegetation index labels V Ik,t by using a DOMIN-like scale
[5] on each image’s vicinity, since it is not possible for us to manually sample from the
physical locations of our forest image datasets.

2.1 Overall model design

Given this ground truth model above, our model behaves in a similar way: detect
the vicinity of the scene and identify the vegetation present. Firstly, we assume that
Dw(·||xc, yc) is proportional to the depth Dw of a real world point x, y:

Dw(x, y||xc, yc) ∝ Dw(x, y)

Then, given only the pixels of an image u, v, we approximate the depth Dw(x, y)
with a function D̂(u, v) called the pixel depth map, that we learn from data. Note this
is implicity performing a pixel-to-world camera calibration (u, v)− > (x, y). Then the
vicinity in the image scene V̂ is

V̂ = u, v : D̂(u, v) ≤ γ̂

where γ̂ is set manually: further work will calculate this parameter by calibrating
the exactness of the real-world vicinity to that calculated by the depth map. For now,
we we calibrate the whole time-series using a factor

V Ik,0

V̂ Ik,0
.

Next, to identify the vegetation present, we learn a function from data called the
pixel classification map to assign class labels to each pixel in a scene:
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Figure 1: Above: Monodepth2 model overview from [10]. The depth network is a
standard U-Net encoder-decoder network [11] with a ResNet encoder [8], and the pose
network, which estimates the pairwise image perspective, is also a smaller ResNet.
Note that absolute scale can never be inferred. Below: DeepLabv3 model overview
from [12], which is based on a ResNet with atrous convolution steps. Future work is to
explore combining these networks to share one ResNet for feature extraction efficiency.

Ẑ(ui, vi)− > zi, zi ∈ K = 1, 2, . . . K

Finally, the vegetation index is estimated by the model as:

V̂ Ik,t =
∑

(ui,vi)∈V̂

I(zi = k)D̂(ui, vi)

where we multiply by the depth too to correct for pixel size at different depths in
the frame. The functions D̂(u, v) and Ẑ(u, v) are estimated as described below.

2.2 Depth estimation network design

The task of estimating the pixel depth map function D̂(u, v) from a single frame is
called monocular depth estimation, for which there exists many different methods in
the robotic forest navigation domain [9]. Because it is difficult to obtain ground-truth
image-depth data, we choose a self-supervised model Monodepth2 [10]. This can be
trained using the slight differences in perspective in sequential video frames (Figure 1).

2.3 Semantic segmentation network design

The task of estimating the pixel classification map function Ẑ(u, v) is called semantic
segmentation, and has been widely used to recognise various kinds of vegetation and
natural objects in images and videos [13]. [14],[15] showed that many models are close
to state-of-the-art in forest image segmentation, including their own model AdapNet++
as well as DeepLabv3 [12] and U-Net [11]. We choose the DeepLabv3 for the above
reason, and as it is lightweight and fast to train using transfer learning (Figure 1).
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3 Experiments

We train and test the semantic segmentation model with the Freiburg forest dataset
originally used for trail navigation in [14], consisting of videos taken by a robotic vehicle,
with some pixel-level segmentation annotations Z(u, v). We consider the categories:
vegetation, grass, trail, sky and junk. A sample image is shown in Figure 2a. In total,
230 images are used for training, and 136 for validation.

For the experiments concerned, we do not train the depth estimation model at all,
and leave it for future work. Instead, we evaluate and use the out-of-the-box model
directly on the Freiburg forest validation and test sets, where the model was trained
on the KITTI autonomous driving dataset [16].

We implement the models using the deep learning library PyTorch, allowing us to
easily use the pre-trained ResNet weights for TL, and we train on GPU.

4 Results

All numerical results below are summarised in summarised in Table 1. Example outputs
of the two networks are also shown in Figure 2. We test our overall model on an unseen
sequence of video frames and compare the resulting vegetation index time series V̂ Ik,t
with hand labels V Ik,t (see Figure 3) using the correlation coefficient to surmount the
calibration problem.

We evaluate the depth estimation model Monodepth2 by comparing predictions
D̂u,v on the Freiburg forest validation set images with ground truth depth masks from
[14] using the correlation coefficient and the mean error per image to overcome the
exact depth scale inference, averaged across the entire set.

Figure 4 shows the success of the transfer learning for the semantic segmentation
model DeepLabv3. After training, we evaluate the model’s predictions Ẑu,v on the
validation set with respect to the ground truth segmentation labels.

5 Discussion and conclusions

The vegetation index evaluation result is well within human interpretation errors and
shows that automated image-based vegetation quantification can replace human meth-
ods. After calibration, these vegetation indices can be directly used for vegetation
monitoring in forests. Further work is to be done in evaluating the model on a larger
dataset with field-sampled vegetation ground truths.

Delving into the model, the depth predictions show low error compared to ground
truth even when the model is untrained, and the semantic segmentation training shows
high accuracy (in line with results from [14]), showing that these two models are well
suited to forest scene understanding.

4



PMCC(V Ivegetation,t, V̂ Ivegetation,t) 90.4%

PMCC(V Igrass,t, V̂ Igrass,t) 86.0%

PMCC(D(u, v), D̂(u, v)) mean 78.9%

MAPE(D(u, v), D̂(u, v)) mean 30.5%

F1(Z(u, v), Ẑ(u, v)) 83.8%

Table 1: All evaluation results of our model. PMCC is the correlation coefficient
∈ [−1, 1], MAPE is mean absolute percentage error ∈ [0, 1], and F1 ∈ [0, 1] is the
harmonic mean of the precision and recall.

(a) Original input image. (b) Mono-depth estimation (c) Semantic segmentation

Figure 2: Model outputs for an example forest image.

Figure 3: Vegetation index series for an example video travelling on a forest path for
quantification of grass and vegetation. Left: ground truth vegetation index labels from
manual examination of images. Right: predicted vegetation index time series using our
model (y axis is arbitrary).

Figure 4: F1-scores vs epoch during transfer learning training of DeepLabv3 model.
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