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Sequence data

I believe that at the end of the 
century the use of words and 
general educated opinion will have 
altered so much that one will be 
able to speak of machines thinking 
without expecting to be 
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Markov models for discrete data: n-gram models

First order Markov (bi-gram) 

discrete states

Second order Markov (tri-gram) 

initial state probabilities transition probabilities
(stochastic matrix)

n-grams require large 
multidimensional arrays
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Example application of n-grams: text modelling for dasher

http://www.inference.phy.cam.ac.uk/dasher/ https://www.youtube.com/watch?v=nr3s4613DX8

http://www.inference.phy.cam.ac.uk/dasher/
https://www.youtube.com/watch?v=nr3s4613DX8


Markov models for discrete data: n-gram models

First order Markov (bi-gram) 

discrete states

Second order Markov (tri-gram) 

initial state probabilities transition probabilities
(stochastic matrix)

n-grams require large 
multidimensional arrays



Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1)) 

continuous vector states

Second order Markov (AR(2)) 

initial state density transition density

joint distribution over all variables
is always multivariate Gaussian



Markov models for continuous data: Auto-Regressive (AR) Gaussian models
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Example application of Markov Models: pendulum swing up control problem



Hidden Markov models

fully connected

marginalise latents

observed
data

latent
Markov model

Natural Language Processing

topics

words

Real data depend on latent variables

ASR

phonemes/words

waveform/feature

Computer Vision

objects, pose, lighting 

image pixel intensities

Two prevelant Examples:

Hidden Markov Models (discrete    )
Linear Gaussian State Space Models (Gaussian    and    )
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Hidden Markov models: discrete hidden state

this HMM = Mixture of Gaussian Models with dynamic cluster assignments

stationary distribution of Markov chain satifies

Discrete Hidden State, Continuous Observed State

Q1: What type of distribution is           ?  

Consider T = 1 

Q2: What distribution does            converge to after a long time?  



Hidden Markov models: continuous hidden state (LGSSMs)
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Varieties of Inference
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Kalman Filter Demo

I data: yt = sin(Êt) + ‡y‘t where ‡2
y = 0.1

I model: xt = ⁄xt≠1 + ‡÷ and yt = xt + ‡y÷Õ
t

where ⁄ = 0.99 and ‡2 = 1 ≠ ⁄2

I demo shows how the Kalman filter processes the data to form

estimates of the hidden state at each time point p(xt |y1:t)
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-5 0 5

LGSSM: Kalman Smoother
HMM: Forward-Backward= Algorithm

LGSSM: Kalman Smoother
HMM: Viterbi Decoding

How can we compute the 
smoothing estimate?

How can we compute the 
most probable sequence?

How can we compute the likelihood efficiently?
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What's going on here?

all sequences 

In discrete case, likelihood involves sum over all sequences:

Trellis diagram represents possible sequences:

Exponential number of sequences: 

But Forward algorithm had linear complexity in time (loop over t)

Markov property means we can forget history of previous states: 
just remember last one (dynamic programming/belief propagation)
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Maximum Likelihood Learning of HMMs: simple once inference is solved

simple form: e.g. quadratic in    for LGSSMs

log-likelihood:

gradient of
log-likelihood:

show gradient depends 
on simple moments 
of posterior:

requires posterior moments: marginals and pairwise marginals



Course Survey: please complete this!


