Sequence Modelling

Rich Turner and José Miguel Hernández-Lobato

Sequence data

Gpod King Wencerlas Looked out,
Gpod King Wencerlas Looked out,
On the 7east of Sterhim,
On the 7east of Sterhim,
Whten the smow lay round about,
Whten the smow lay round about,
Deep and crosp and even;
Baightly shone the moon that night,
Though the froat was crucl,
When a poor man came in sight,
lactherng winter fud.
RNA
Ribonucleic acid

Preliminary Determination of Epicenters

Some images taken from wikipedia

Goals of sequence modelling

Predict future items in sequence

$$
p\left(y_{t} \mid y_{1}, \ldots, y_{t-1}\right)
$$

Remove noise from a sequence

$$
p\left(y_{1}^{\prime}, \ldots, y_{t}^{\prime} \mid y_{1}, \ldots, y_{t}\right)
$$

Predict one sequence from another

$$
p\left(y_{1}^{\prime}, \ldots, y_{t}^{\prime} \mid y_{1}, \ldots, y_{t}\right)
$$

Discover underlying latent variables

$$
p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)
$$

私はでそれを信じて

Markov models

First order Markov

$$
p\left(y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}\right) \ldots p\left(y_{T} \mid y_{T-1}\right)
$$

Markov models

parameters tied $\sim \infty$ number of variables
First order Markov
 finite number of parameters

$$
p\left(y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}\right) \ldots p\left(y_{T} \mid y_{T-1}\right)
$$

Markov models

Markov model $=$ conditional independence relationship + product rule

$$
\begin{aligned}
& \begin{array}{c}
\text { future } \rightarrow y_{t+1} \stackrel{\downarrow}{\perp(1: t-1)} \mid y_{t} \\
T=4 \\
\text { given present } \\
p\left(y_{1: T}\right)=\prod_{t=1}^{T} p\left(y_{t} \mid y_{1: t-1}\right) \\
\end{array} \\
& p\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}, y_{1}\right) p\left(y_{4} \mid y_{3}, y_{2}, y_{1}\right) \\
& p\left(y_{3} \mid y_{2}\right) \quad p\left(y_{4} \mid y_{3}\right)
\end{aligned}
$$

Markov models

First order Markov
parameters tied $\sim \infty$ number of variables
 finite number of parameters

$$
p\left(y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}\right) \ldots p\left(y_{T} \mid y_{T-1}\right)
$$

Markov model $=$ conditional independence relationship + product rule

$$
\text { future } \rightarrow y_{t+1 \perp} y_{1: t-1} \mid y_{t} \text { independent of past } \quad p\left(y_{1: T}\right)=\prod_{t=1}^{T} p\left(y_{t} \mid y_{1: t-1}\right)
$$

Second order Markov

$$
p\left(y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}, y_{1}\right) \ldots p\left(y_{T} \mid y_{T-1}, y_{T-2}\right)
$$

Markov models for discrete data: n -gram models

First order Markov (bi-gram)

$$
p\left(y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}\right) \ldots p\left(y_{T} \mid y_{T-1}\right)
$$

Second order Markov (tri-gram)
$p\left(y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}, y_{1}\right) \ldots p\left(y_{T} \mid y_{T-1}, y_{T-2}\right)$

Some questions about n -gram models

First order Markov (bi-gram)

$$
y_{t} \in\{1, \ldots, K\} \quad p\left(y_{1}=k\right)=\pi_{k}^{0} \quad p\left(y_{t}=k \mid y_{t-1}=l\right)=T_{k, l}
$$

Q1. How can we compute the marginal distribution over the second state?

$$
\begin{aligned}
p\left(y_{2}=l\right) & \left.=\sum_{k} p l y_{2}=l \mid y_{1}=k\right) p\left(y_{1}=k\right)=\sum_{k} T_{l k} \pi_{k}^{0} \\
p\left(y_{2}\right)= & =\Pi^{0} \\
& \left(\pi^{0}\right)^{\top} T^{\top}
\end{aligned}
$$

Some questions about n -gram models

First order Markov (bi-gram)

$$
y_{t} \in\{1, \ldots, K\} \quad p\left(y_{1}=k\right)=\pi_{k}^{0} \quad p\left(y_{t}=k \mid y_{t-1}=l\right)=T_{k, l}
$$

Q1. How can we compute the marginal distribution over the second state?

$$
p\left(y_{2}=k\right)=\sum_{l=1}^{K} p\left(y_{2}=k \mid y_{1}=l\right) p\left(y_{1}=l\right)=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{0}
$$

Some questions about n-gram models

First order Markov (bi-gram)

$$
y_{t} \in\{1, \ldots, K\} \quad p\left(y_{1}=k\right)=\pi_{k}^{0} \quad p\left(y_{t}=k \mid y_{t-1}=l\right)=T_{k, l}
$$

Q1. How can we compute the marginal distribution over the second state?

$$
p\left(y_{2}=k\right)=\sum_{l=1}^{K} p\left(y_{2}=k \mid y_{1}=l\right) p\left(y_{1}=l\right)=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{0} \nleftarrow
$$

Q2. How can we compute the stationary distribution for the Markov chain?
invariant distribution
eigenvalues of transition matrix

$$
\begin{aligned}
& p\left(y_{\infty}=k\right)=\sum_{l} p\left(y_{n}=k \mid y_{\infty-1}=\ell\right) p\left(y_{\infty=1}^{=l}\right) \\
& p\left(y_{n}=k\right)=\sum_{l} T_{k l} p\left(y_{n-1}=l\right) \\
& 1 \times P_{\infty} \leq \lambda_{\mu}=1 \\
& =T e P_{\mu}=\lambda_{\mu} e_{\mu}
\end{aligned}
$$

Some questions about n -gram models

First order Markov (bi-gram)

$$
y_{t} \in\{1, \ldots, K\} \quad p\left(y_{1}=k\right)=\pi_{k}^{0} \quad p\left(y_{t}=k \mid y_{t-1}=l\right)=T_{k, l}
$$

Q1. How can we compute the marginal distribution over the second state?

$$
p\left(y_{2}=k\right)=\sum_{l=1}^{K} p\left(y_{2}=k \mid y_{1}=l\right) p\left(y_{1}=l\right)=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{0}
$$

Q2. How can we compute the stationary distribution for the Markov chain?

$$
p\left(y_{t}=k\right)=\sum_{l=1}^{K} p\left(y_{t}=k \mid y_{t-1}=l\right) p\left(y_{t-1}=l\right)
$$

Some questions about n -gram models

First order Markov (bi-gram)

$$
y_{t} \in\{1, \ldots, K\} \quad p\left(y_{1}=k\right)=\pi_{k}^{0} \quad p\left(y_{t}=k \mid y_{t-1}=l\right)=T_{k, l}
$$

Q1. How can we compute the marginal distribution over the second state?

$$
p\left(y_{2}=k\right)=\sum_{l=1}^{K} p\left(y_{2}=k \mid y_{1}=l\right) p\left(y_{1}=l\right)=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{0}
$$

Q2. How can we compute the stationary distribution for the Markov chain?

$$
\begin{aligned}
& p\left(y_{t}=k\right)=\sum_{l=1}^{K} p\left(y_{t}=k \mid y_{t-1}=l\right) p\left(y_{t-1}=l\right) \begin{array}{c}
\text { eigenvectors of } \\
\text { transition matrix }
\end{array} \\
& \pi_{k}^{\infty}=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{\infty} \\
& \text { with eigenvalue }=1
\end{aligned}
$$

Some questions about n -gram models

First order Markov (bi-gram)

$$
y_{t} \in\{1, \ldots, K\} \quad p\left(y_{1}=k\right)=\pi_{k}^{0} \quad p\left(y_{t}=k \mid y_{t-1}=l\right)=T_{k, l}
$$

Q1. How can we compute the marginal distribution over the second state?

$$
p\left(y_{2}=k\right)=\sum_{l=1}^{K} p\left(y_{2}=k \mid y_{1}=l\right) p\left(y_{1}=l\right)=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{0}
$$

Q2. How can we compute the stationary distribution for the Markov chain?

$$
\begin{aligned}
p\left(y_{t}=k\right) & =\sum_{l=1}^{K} p\left(y_{t}=k \mid y_{t-1}=l\right) p\left(y_{t-1}=l\right) \\
\pi_{k}^{\infty}=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{\infty} & \begin{array}{l}
\text { eigenvectors of } \\
\text { transition matrix } \\
\text { with eigenvalue }=1
\end{array}
\end{aligned}
$$

Q3. Which transition matrix is most compatible with the following sequence?

ABAAABBABCCCBC
'State Transition Diagrams'

Some questions about n-gram models

First order Markov (bi-gram)

$$
y_{t} \in\{1, \ldots, K\} \quad p\left(y_{1}=k\right)=\pi_{k}^{0} \quad p\left(y_{t}=k \mid y_{t-1}=l\right)=T_{k, l}
$$

Q1. How can we compute the marginal distribution over the second state?

$$
p\left(y_{2}=k\right)=\sum_{l=1}^{K} p\left(y_{2}=k \mid y_{1}=l\right) p\left(y_{1}=l\right)=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{0}
$$

Q2. How can we compute the stationary distribution for the Markov chain?

$$
\begin{array}{rlrl}
p\left(y_{t}=k\right) & =\sum_{l=1}^{K} p\left(y_{t}=k \mid y_{t-1}=l\right) p\left(y_{t-1}=l\right) & \begin{array}{l}
\text { eigenvectors of } \\
\text { transition matrix }
\end{array} \\
\pi_{k}^{\infty} & =\sum_{l=1}^{K} T_{k, l} \pi_{l}^{\infty} & & \text { with eigenvalue }=1
\end{array}
$$

Q3. Which transition matrix is most compatible with the following sequence?

ABAAABBABCCCBC

'State Transition Diagrams'

Example application of n-grams: text modelling for dasher

Markov models for discrete data: n -gram models

First order Markov (bi-gram)

$$
p\left(y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}\right) \ldots p\left(y_{T} \mid y_{T-1}\right)
$$

Second order Markov (tri-gram)
$p\left(y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}, y_{1}\right) \ldots p\left(y_{T} \mid y_{T-1}, y_{T-2}\right)$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
p\left(y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}\right) \ldots p\left(y_{T} \mid y_{T-1}\right)
$$

$y_{t} \in \mathbb{R}^{D}$

$$
p\left(y_{1}\right)=\mathcal{G}\left(y_{1} ; \underset{\sim}{\mu}, \Sigma_{0}\right) \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \Lambda y_{t-1}, \Sigma\right)
$$

continuous vector states initial state density transition density

$$
\mathcal{G}(y ; \mu, \Sigma)=\frac{1}{(2 \pi)^{D / 2} \operatorname{det}(\Sigma)^{1 / 2}} \exp \left\{-\frac{1}{2}(y-\mu)^{\top} \Sigma^{-1}(y-\mu)\right\}
$$

Second order Markov (AR(2))
$p\left(y_{1}, y_{2}, y_{3}, \ldots, y_{T}\right)=p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{2}, y_{1}\right) \ldots p\left(y_{T} \mid y_{T-1}, y_{T-2}\right)$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \quad \sigma^{2}=0.01
$$

Second order Markov (AR(2))

$$
\begin{array}{rlrl}
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}, y_{t-2}\right) & =\mathcal{G}\left(y_{t} ; \lambda_{1} y_{t-1}+\lambda_{2} y_{t-2}, \sigma^{2}\right) \\
{\left[\lambda_{1}, \lambda_{2}\right]} & =[1.57,-0.78] & \sigma^{2}=0.01
\end{array}
$$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=?$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

$$
y_{t}=\lambda y_{t-1}+\sigma \epsilon_{t} \epsilon_{t} \sim \mathcal{G}(0,1)
$$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

$$
y_{t}=\lambda y_{t-1}+\sigma \epsilon_{t} \epsilon_{t} \sim \mathcal{G}(0,1)
$$

Mean: $\quad \frac{\left\langle y_{t}\right\rangle}{\tilde{T}}=\left\langle\lambda y_{t-1}+\sigma \varepsilon_{t}\right\rangle=\lambda\left\langle y_{t-1}\right\rangle+\sigma\left\langle\varepsilon_{t}\right\rangle$ $\mathbb{E}\left(g_{t}\right)$

$$
=\lambda\left\langle\frac{\left.y_{t-1}\right\rangle}{}\right\rangle
$$

$$
\mu_{a}=\lambda \mu_{\infty} \Rightarrow \mu_{\infty}=0
$$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

$$
y_{t}=\lambda y_{t-1}+\sigma \epsilon_{t} \epsilon_{t} \sim \mathcal{G}(0,1)
$$

Mean:

$$
\left\langle y_{t}\right\rangle=\lambda\left\langle y_{t-1}\right\rangle+\sigma\left\langle\epsilon_{t}\right\rangle=0
$$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

$$
y_{t}=\lambda y_{t-1}+\sigma \epsilon_{t} \epsilon_{t} \sim \mathcal{G}(0,1)
$$

Mean:

$$
\left\langle y_{t}\right\rangle=\lambda\left\langle y_{t-1}\right\rangle+\sigma\left\langle\epsilon_{t}\right\rangle=0
$$

$$
\mu_{\infty}=0
$$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \quad \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

$$
y_{t}=\lambda y_{t-1}+\sigma \epsilon_{t} \epsilon_{t} \sim \mathcal{G}(0,1)
$$

Mean:

$$
\left\langle y_{t}\right\rangle=\lambda\left\langle y_{t-1}\right\rangle+\sigma\left\langle\epsilon_{t}\right\rangle=0
$$

$$
\mu_{\infty}=0
$$

Variance: $\left\langle y_{t}^{2}\right\rangle$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \quad \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

$$
y_{t}=\lambda y_{t-1}+\sigma \epsilon_{t} \epsilon_{t} \sim \mathcal{G}(0,1)
$$

Mean:

$$
\left\langle y_{t}\right\rangle=\lambda\left\langle y_{t-1}\right\rangle+\sigma\left\langle\epsilon_{t}\right\rangle=0
$$

$$
\mu_{\infty}=0
$$

Variance: $\left\langle y_{t}^{2}\right\rangle=\left\langle\left(\lambda y_{t-1}+\sigma \epsilon_{t}\right)^{2}\right\rangle$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \quad \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

$$
y_{t}=\lambda y_{t-1}+\sigma \epsilon_{t} \epsilon_{t} \sim \mathcal{G}(0,1)
$$

Mean:

$$
\left\langle y_{t}\right\rangle=\lambda\left\langle y_{t-1}\right\rangle+\sigma\left\langle\epsilon_{t}\right\rangle=0
$$

$$
\mu_{\infty}=0
$$

Variance: $\left\langle y_{t}^{2}\right\rangle=\left\langle\left(\lambda y_{t-1}+\sigma \epsilon_{t}\right)^{2}\right\rangle=\lambda^{2}\left\langle y_{t-1}^{2}\right\rangle+2 \lambda \sigma\left\langle y_{t-1} \epsilon_{t}\right\rangle+\sigma^{2}\left\langle\epsilon_{t}^{2}\right\rangle$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \quad \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

$$
y_{t}=\lambda y_{t-1}+\sigma \epsilon_{t} \epsilon_{t} \sim \mathcal{G}(0,1)
$$

Mean:

$$
\left\langle y_{t}\right\rangle=\lambda\left\langle y_{t-1}\right\rangle+\sigma\left\langle\epsilon_{t}\right\rangle=0 \quad \mu_{\infty}=0
$$

Variance: $\left\langle y_{t}^{2}\right\rangle=\left\langle\left(\lambda y_{t-1}+\sigma \epsilon_{t}\right)^{2}\right\rangle=\lambda^{2}\left\langle y_{t-1}^{2}\right\rangle+2 \lambda \sigma\left\langle y_{t-1} \epsilon_{t}\right\rangle+\sigma^{2}\left\langle\epsilon_{t}^{2}\right\rangle$

$$
\left\langle y_{t}^{2}\right\rangle=\lambda^{2}\left\langle y_{t-1}^{2}\right\rangle+\sigma^{2}
$$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \quad \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

$$
y_{t}=\lambda y_{t-1}+\sigma \epsilon_{t} \epsilon_{t} \sim \mathcal{G}(0,1)
$$

Mean:

$$
\left\langle y_{t}\right\rangle=\lambda\left\langle y_{t-1}\right\rangle+\sigma\left\langle\epsilon_{t}\right\rangle=0 \quad \mu_{\infty}=0
$$

Variance: $\left\langle y_{t}^{2}\right\rangle=\left\langle\left(\lambda y_{t-1}+\sigma \epsilon_{t}\right)^{2}\right\rangle=\lambda^{2}\left\langle y_{t-1}^{2}\right\rangle+2 \lambda \sigma\left\langle y_{t-1} \epsilon_{t}\right\rangle+\sigma^{2}\left\langle\epsilon_{t}^{2}\right\rangle$

$$
\left\langle y_{t}^{2}\right\rangle=\lambda^{2}\left\langle y_{t-1}^{2}\right\rangle+\sigma^{2} \quad \sigma_{\infty}^{2}=\lambda^{2} \sigma_{\infty}^{2}+\sigma^{2}
$$

Markov models for continuous data: Auto-Regressive (AR) Gaussian models

First order Markov (AR(1))

$$
y_{t} \in \mathbb{R}^{1} \quad p\left(y_{t} \mid y_{t-1}\right)=\mathcal{G}\left(y_{t} ; \lambda y_{t-1}, \sigma^{2}\right) \quad \lambda=0.9 \sigma^{2}=0.01
$$

What is the stationary distribution of this process? $p\left(y_{\infty}\right)=$?
Everything is linear Gaussian $=>$ must be Gaussian $p\left(y_{\infty}\right)=\mathcal{G}\left(y_{\infty} ; \mu_{\infty}, \sigma_{\infty}^{2}\right)$

$$
y_{t}=\lambda y_{t-1}+\sigma \epsilon_{t} \epsilon_{t} \sim \mathcal{G}(0,1)
$$

Mean:

$$
\left\langle y_{t}\right\rangle=\lambda\left\langle y_{t-1}\right\rangle+\sigma\left\langle\epsilon_{t}\right\rangle=0 \quad \mu_{\infty}=0
$$

Variance: $\left\langle y_{t}^{2}\right\rangle=\left\langle\left(\lambda y_{t-1}+\sigma \epsilon_{t}\right)^{2}\right\rangle=\lambda^{2}\left\langle y_{t-1}^{2}\right\rangle+2 \lambda \sigma\left\langle y_{t-1} \epsilon_{t}\right\rangle+\sigma^{2}\left\langle\epsilon_{t}^{2}\right\rangle$

$$
\left\langle y_{t}^{2}\right\rangle=\lambda^{2}\left\langle y_{t-1}^{2}\right\rangle+\sigma^{2} \quad \sigma_{\infty}^{2}=\lambda^{2} \sigma_{\infty}^{2}+\sigma^{2} \quad \sigma_{\infty}^{2}=\frac{\sigma^{2}}{1-\lambda^{2}}
$$

Markov Modals
$1^{\text {st }}$ Oider

3F8 QGA Wad 9.30-11.007
CBL Seminar Room
jee Moodle for decrills

$$
p\left(y_{1: T}\right)=p\left(y_{1}\right) p\left(y_{2}\left(y_{1}\right) \cdots p\left(y_{T} \mid y_{T-1}\right)\right.
$$

discrete $y \Rightarrow$ bigram models

$$
\begin{aligned}
& p\left(y_{1}=k\right)=\pi_{k}^{0} \\
& p\left(y_{t}=k \mid y_{t-1}=l\right)=T_{k l}
\end{aligned}
$$

U
Stationay /invariant distrolutian

$$
p\left(y_{\infty}=k\right)=\pi_{k}^{\infty}=\sum_{k} T_{k l} \pi_{k}^{\infty}
$$

continuon) $y \Rightarrow$ antoregrssive

$$
\begin{aligned}
& p\left(\underline{y}_{1}\right)=G\left(\underline{y_{1}}: \mu_{0}, \Sigma_{1}\right) \\
& \operatorname{dim}\left(y_{1}\right)=D \quad D \times D \\
& p\left(\underline{y}_{t}\left(\underline{y}_{\underline{t}-1}\right)=G\left(\underline{f}_{t} ; \mathcal{N}_{\underline{y_{t-1}}, \underline{2}}\right)\right.
\end{aligned}
$$

Stationary distribatian

$$
p\left(y_{\infty}\right)=C\left(y_{\infty} ; \mu_{\infty}=0, \sigma_{\infty}^{2}=\frac{\sigma^{2}}{1-x^{2}}\right)
$$

Example application of Markov Models: pendulum swing up control problem

Hidden Markov models

Real data depend on latent variables ASR
x phonemes/words
y waveform/feature
Computer Vision
x objects, pose, lighting
y image pixel intensities
Natural Language Processing
x topics
y words
Two prevelant Examples:
Hidden Markov Models (discrete x)
Linear Gaussian State Space Models (Gaussian x and y)

Hidden Markov models: discrete hidden state

Discrete Hidden State
$x_{t} \in\{1, \ldots, K\}$
$p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k, l}$
E.g. in examples below $\quad K=2$
data

$$
T=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.1 & 0.9
\end{array}\right]
$$

$$
p\left(y_{1: T}, x_{1: T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right) p\left(y_{t} \mid x_{t}\right)
$$

Continuous Observed State

$$
p\left(y_{t} \mid x_{t}=k\right)=\mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
$$

$$
\mu_{1}=3 \quad \mu_{2}=-3 \quad \sigma_{1}^{2}=\sigma_{2}^{2}=1
$$

Hidden Markov models: discrete hidden state

Discrete Hidden State

$$
\begin{aligned}
& x_{t} \in\{1, \ldots, K\} \\
& p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k, l}
\end{aligned}
$$

E.g. in examples below $\quad K=2$

$$
T=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.1 & 0.9
\end{array}\right]
$$

Continuous Observed State
$p\left(y_{t} \mid x_{t}=k\right)=\mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)$
$\mu_{1}=3 \quad \mu_{2}=-3 \quad \sigma_{1}^{2}=\sigma_{2}^{2}=1$

Discrete Observed State
$p\left(y_{t}=l \mid x_{t}=k\right)=S_{l, k}$
$S=\left[\begin{array}{cc}0.5 & 0 \\ 0.5 & 0 \\ 0 & 1\end{array}\right]$
data

$$
p\left(y_{1: T}, x_{1: T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right) p\left(y_{t} \mid x_{t}\right)
$$

ABBBBAAABAAACCCCCBBBBBBCCCCCCCCCCC AAABBBBAABAAABBCCCCCCCCCCCCCCCCBBA AACCCCCCBABCCCCCCCAABBAABABCCCCC

Hidden Markov models: discrete hidden state

Discrete Hidden State, Continuous Observed State

$$
\begin{aligned}
& x_{t} \in\{1, \ldots, K\} \\
& \frac{p\left(x_{1}=k\right)=\pi_{k}^{0}}{p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k, l}} \\
& p\left(y_{t} \mid x_{t}=k\right)=\mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Consider $\mathrm{T}=1$

Q1: What type of distribution is $p\left(y_{1}\right)$?

$$
\begin{array}{r}
p\left(y_{1}\right)=\sum_{k=1}^{k} p\left(y_{1}, x_{1}=k\right)=\sum_{k=1}^{k} p\left(x_{1}=k\right) p\left(y_{1} \mid x_{1}=k\right) \\
p\left(y_{1}\right)=\sum_{k=1}^{k} \pi_{k}^{0} G\left(y_{1}, \mu_{k} \varepsilon_{k}\right)
\end{array}
$$

Hidden Markov models: discrete hidden state

Discrete Hidden State, Continuous Observed State

$$
\begin{aligned}
& x_{t} \in\{1, \ldots, K\} \\
& p\left(x_{1}=k\right)=\pi_{k}^{0} \\
& p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k, l} \\
& p\left(y_{t} \mid x_{t}=k\right)=\mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Consider T = 1

Q1: What type of distribution is $p\left(y_{1}\right)$?

$$
p\left(y_{1}\right)=\sum_{k} p\left(y_{1} \mid x_{1}=k\right) p\left(x_{1}=k\right)
$$

Hidden Markov models: discrete hidden state

Discrete Hidden State, Continuous Observed State

$$
\begin{aligned}
& x_{t} \in\{1, \ldots, K\} \\
& p\left(x_{1}=k\right)=\pi_{k}^{0} \\
& p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k, l} \\
& p\left(y_{t} \mid x_{t}=k\right)=\mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Consider T = 1

Q1: What type of distribution is $p\left(y_{1}\right)$?

$$
p\left(y_{1}\right)=\sum_{k} p\left(y_{1} \mid x_{1}=k\right) p\left(x_{1}=k\right)=\sum_{k} \pi_{k}^{0} \mathcal{G}\left(y_{1} ; \mu_{k}, \Sigma_{k}\right)
$$

Hidden Markov models: discrete hidden state

Discrete Hidden State, Continuous Observed State

$$
\begin{aligned}
& x_{t} \in\{1, \ldots, K\} \\
& p\left(x_{1}=k\right)=\pi_{k}^{0} \\
& p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k, l} \\
& p\left(y_{t} \mid x_{t}=k\right)=\mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Consider T = 1

Q1: What type of distribution is $p\left(y_{1}\right)$?

$$
p\left(y_{1}\right)=\sum_{k} p\left(y_{1} \mid x_{1}=k\right) p\left(x_{1}=k\right)=\sum_{k} \pi_{k}^{0} \mathcal{G}\left(y_{1} ; \mu_{k}, \Sigma_{k}\right)
$$

Q2: What distribution does $p\left(y_{t}\right)$ converge to after a long time?

Hidden Markov models: discrete hidden state

Discrete Hidden State, Continuous Observed State

$$
\begin{aligned}
& x_{t} \in\{1, \ldots, K\} \\
& p\left(x_{1}=k\right)=\pi_{k}^{0} \\
& p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k, l} \\
& p\left(y_{t} \mid x_{t}=k\right)=\mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Consider T = 1

Q1: What type of distribution is $p\left(y_{1}\right)$?

$$
p\left(y_{1}\right)=\sum_{k} p\left(y_{1} \mid x_{1}=k\right) p\left(x_{1}=k\right)=\sum_{k} \pi_{k}^{0} \mathcal{G}\left(y_{1} ; \mu_{k}, \Sigma_{k}\right)
$$

Q2: What distribution does $p\left(y_{t}\right)$ converge to after a long time?
stationary distribution of Markov chain satifies $\pi_{k}^{\infty}=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{\infty}$

Hidden Markov models: discrete hidden state

Discrete Hidden State, Continuous Observed State

$$
\begin{aligned}
& x_{t} \in\{1, \ldots, K\} \\
& p\left(x_{1}=k\right)=\pi_{k}^{0} \\
& p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k, l} \\
& p\left(y_{t} \mid x_{t}=k\right)=\mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Consider T = 1

Q1: What type of distribution is $p\left(y_{1}\right)$?

$$
p\left(y_{1}\right)=\sum_{k} p\left(y_{1} \mid x_{1}=k\right) p\left(x_{1}=k\right)=\sum_{k} \pi_{k}^{0} \mathcal{G}\left(y_{1} ; \mu_{k}, \Sigma_{k}\right)
$$

Q2: What distribution does $p\left(y_{t}\right)$ converge to after a long time?

$$
\text { stationary distribution of Markov chain satifies } \pi_{k}^{\infty}=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{\infty}
$$

$$
p\left(y_{t}\right)=\sum_{k} p\left(y_{t} \mid x_{t}=k\right) p\left(x_{t}=k\right)
$$

Hidden Markov models: discrete hidden state

Discrete Hidden State, Continuous Observed State

$$
\begin{aligned}
& x_{t} \in\{1, \ldots, K\} \\
& p\left(x_{1}=k\right)=\pi_{k}^{0} \\
& p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k, l} \\
& p\left(y_{t} \mid x_{t}=k\right)=\mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Consider T = 1

Q1: What type of distribution is $p\left(y_{1}\right)$?

$$
p\left(y_{1}\right)=\sum_{k} p\left(y_{1} \mid x_{1}=k\right) p\left(x_{1}=k\right)=\sum_{k} \pi_{k}^{0} \mathcal{G}\left(y_{1} ; \mu_{k}, \Sigma_{k}\right)
$$

Q2: What distribution does $p\left(y_{t}\right)$ converge to after a long time?

$$
\begin{aligned}
& \text { stationary distribution of Markov chain satifies } \pi_{k}^{\infty}=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{\infty} \\
& p\left(y_{t}\right)=\sum_{k} p\left(y_{t} \mid x_{t}=k\right) p\left(x_{t}=k\right) \rightarrow \sum_{k} \pi_{k}^{\infty} \mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Hidden Markov models: discrete hidden state

Discrete Hidden State, Continuous Observed State

$$
\begin{aligned}
& x_{t} \in\{1, \ldots, K\} \\
& p\left(x_{1}=k\right)=\pi_{k}^{0} \\
& p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k, l} \\
& p\left(y_{t} \mid x_{t}=k\right)=\mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Consider T = 1

Q1: What type of distribution is $p\left(y_{1}\right)$?

$$
p\left(y_{1}\right)=\sum_{k} p\left(y_{1} \mid x_{1}=k\right) p\left(x_{1}=k\right)=\sum_{k} \pi_{k}^{0} \mathcal{G}\left(y_{1} ; \mu_{k}, \Sigma_{k}\right)
$$

Q2: What distribution does $p\left(y_{t}\right)$ converge to after a long time?

$$
\begin{aligned}
& \text { stationary distribution of Markov chain satifies } \pi_{k}^{\infty}=\sum_{l=1}^{K} T_{k, l} \pi_{l}^{\infty} \\
& p\left(y_{t}\right)=\sum_{k} p\left(y_{t} \mid x_{t}=k\right) p\left(x_{t}=k\right) \rightarrow \sum_{k} \pi_{k}^{\infty} \mathcal{G}\left(y_{t} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

this HMM $=$ Mixture of Gaussian Models with dynamic cluster assignments

Hidden Markov models: continuous hidden state (LGSSMs)

Continuous Hidden State $x_{t} \in \mathbb{R}^{K}$

$$
p\left(x_{t} \mid x_{t-1}\right)=\mathcal{G}\left(x_{t} ; A x_{t-1}, Q\right)_{\text {observed }}
$$

Continuous Observed State $y_{t} \in \mathbb{R}^{D}$
$p\left(y_{t} \mid x_{t}\right)=\mathcal{G}\left(y_{t} ; C x_{t}, R\right)$

$$
p\left(y_{1: T}, x_{1: T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right) p\left(y_{t} \mid x_{t}\right)
$$

$$
\begin{aligned}
& \text { E.g. simple example } K=2 \quad D=1 \\
& \begin{array}{l}
\text { E.g. simple example } K=2 \quad D=1 \\
A=\lambda\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right] \\
\lambda=0.99 \quad \theta=2 \pi / 10
\end{array} \\
& Q=\left(1-\lambda^{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& C=[1,0] \quad R=0.01
\end{aligned}
$$

$$
\begin{aligned}
& \hat{z} N\left(0 ; \mu_{0}\right) \approx p^{*}(\theta)=\left(z p(\theta) \quad(z)=\int p^{*}(\theta) d \theta \approx p(\xi y\} \mid\{x \mid,(, x)\right. \\
& \underline{x}_{t}=\left[\begin{array}{l}
x_{1 t} \\
x_{2 t}
\end{array}\right]=\underline{A}_{\underline{x_{t-1}}}+\underline{Q}^{1 / 2} \underline{\varepsilon}_{t} \quad \underline{\varepsilon}_{t} \sim G(\underline{0}, \underline{\underline{I}}) \\
& \uparrow \text { — }
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[L-\sin \theta]{\cos \theta}] \\
& y_{t}=[1,0]\left[\begin{array}{l}
x_{1 t} \\
x_{t} t
\end{array}\right]+\text { roise }=x_{1 t}+\text { roise }
\end{aligned}
$$

Summary Sequence Modelling Lective II

$$
\underset{\substack{\lambda_{1: T} \\ \text { observed }}}{p\left(\mathcal{N}_{\text {latent }}\right.}=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right) p\left(y_{t} \mid x_{t}\right)
$$

Discrete Hidden State $x_{t} \in\{1 \ldots k\}$ (also called HMM!)

$$
\begin{array}{ll}
& p\left(x_{t}=k \mid x_{t-1}=l\right)=T_{k l} \\
& p\left(y_{t} \mid x_{t-k}\right)=G\left(y_{t} j \mu_{k}, \Sigma_{k}\right) \\
y_{t} \in R_{l}^{D} \\
\sim p\left(y_{t}=l \mid x_{t=k}\right)=\text { Seek } & y_{t} \in\{1 \ldots D\}
\end{array}
$$

Continuous) Hidden State $x_{t} \in R_{e}^{(\mathbb{K})}$ (linear Gomession state Space models)

$$
\begin{aligned}
\rightarrow \underline{p}\left(\underline{x}_{t} \mid \underline{x}_{t-1}\right)=G\left(\underline{x}_{t} j \underline{A} \underline{x}_{t-1}, \underline{Q}\right) \Leftrightarrow \underline{x}_{t}=A \underline{x}_{t-1}+\underline{Q}^{1 / 2} \underline{\varepsilon}_{t} \\
p\left(\underline{y}_{t}\left(\underline{x}_{t}\right)=G\left(\underline{y}_{t} j \underline{x_{x}}, \underline{R}\right) \quad \underline{y}_{t} \in R^{D}\right.
\end{aligned}
$$

Today : Interuce \& Learning

Varieties of Inference
Distributional estimates

infer single state or sequence?	
$\square^{t} T_{T}$	${ }^{t}$ marginal
$p\left(x_{t} \mid y_{1: t}\right)$	joint
$p\left(x_{t} \mid y_{1: T}\right)$	$p\left(x_{1: t} \mid y_{1: t}\right)$

$$
\text { 1. LGSSM } \left.\left.\begin{array}{rl}
p\left(x_{1: T} \mid y_{1: T}\right) & =G\left(x_{1: T} ; \mu_{1: T}, \sum_{1: T}\right) \\
\left.\Rightarrow x_{1: T}^{\prime}=\mu_{1: T}\right) \rho d x_{\neq t} & \sum_{t}\left\{\left(x_{t} \mid y_{1: T}\right)\right.
\end{array}\right\} G\left(x_{t} ; \mu_{t}, \sum_{t: t}^{\infty}\right)\right\} \Rightarrow x_{1: T}^{*}=x_{1: T}^{\prime}
$$

$$
x_{t}^{*}=\mu_{t}
$$

Varieties of Inference

Distributional estimates
infer single state or sequence?

filter
smoother

joint

$$
p\left(x_{1: t} \mid y_{1: t}\right)
$$

$$
p\left(x_{1: T} \mid y_{1: T}\right)
$$

Point estimates
most probable

$$
x_{t}^{*}=\underset{x_{t}}{\arg \max } p\left(x_{t} \mid y_{1: T}\right) \leftarrow \quad x_{1: T}^{\prime}=\underset{x_{1: T}}{\arg \max } p\left(x_{1: T} \mid y_{1: T}\right)
$$

2. Discrete Hidden State HMM
$T=2$

$$
\begin{array}{c|c|c}
x_{1} & x_{2} & p\left(x_{1}, x\right. \\
\hline 0 & 0 & 0.3 \\
0 & 1 & 0.4 \\
1 & 0 & 0.3 \\
1 & 1 & 0
\end{array}
$$

$$
\begin{aligned}
& x_{1: 2}^{\prime}=[0,1] \quad x_{1}^{*}=0 \\
& p\left(x_{1} \mid y_{1}, y_{2}\right)=[0.7,0.3]^{\prime \prime} x_{1}^{*}=0 \\
& P\left(x_{2} \mid y_{1}, y_{2}\right)=[0.6,0.4] / 7
\end{aligned}
$$

$$
p\left(k_{2} \mid y_{1}, y_{2}\right)=[0.610 .4]
$$

Varieties of Inference

Distributional estimates
infer single state or sequence?

filter	
smoother	

joint

$$
\frac{p\left(x_{1: t} \mid y_{1: t}\right)}{p\left(x_{1: T} \mid y_{1: T}\right)}
$$

Point estimates
most probable state @ t

Question: are these estimates the same $x_{1: T}^{*} \stackrel{?}{=} x_{1: T}^{\prime}$ for

1. Linear Gaussian State Spate Models?
2. Discrete Hidden State HMMs?

Varieties of Inference

Distributional estimates
infer single state or sequence?

filter
smoother

joint

$$
\frac{p\left(x_{1: t} \mid y_{1: t}\right)}{p\left(x_{1: T} \mid y_{1: T}\right)}
$$

Point estimates
most probable state @ t

$$
x_{t}^{*}=\underset{x_{t}}{\arg \max } p\left(x_{t} \mid y_{1: T}\right)
$$

$$
x_{1: T}^{\prime}=\underset{x_{1: T}}{\arg \max } p\left(x_{1: T} \mid y_{1: T}\right)
$$

Question: are these estimates the same $x_{1: T}^{*} \stackrel{?}{=} x_{1: T}^{\prime}$ for

1. Linear Gaussian State Spate Models? $x_{1: T}^{*}=x_{1: T}^{\prime}$ (Gaussian)
2. Discrete Hidden State HMMs?

Varieties of Inference

Distributional estimates
infer single state or sequence?

filter
smoother

joint

$$
\begin{gathered}
p\left(x_{1: t} \mid y_{1: t}\right) \\
p\left(x_{1: T} \mid y_{1: T}\right)
\end{gathered}
$$

Point estimates

$$
x_{t}^{*}=\underset{x_{t}}{\left.\arg \max p\left(x_{t} \mid y_{1: T}\right) \quad x_{1: T}^{\prime}=\underset{x_{1: T}}{\arg \max } p\left(x_{1: T} \mid y_{1: T}\right), \text { sequence }\right) \text { moste state @t }}
$$

Question: are these estimates the same $x_{1: T}^{*} \stackrel{?}{=} x_{1: T}^{\prime}$ for

1. Linear Gaussian State Spate Models? $x_{1: T}^{*}=x_{1: T}^{\prime}$ (Gaussian)
2. Discrete Hidden State HMMs?

$$
x_{1: T}^{*} \neq x_{1: T}^{\prime}
$$

Varieties of Inference

Distributional estimates

Point estimates
most probable state @ t

Question: are these estimates the same $x_{1: T}^{*} \stackrel{?}{=} x_{1: T}^{\prime}$ for

1. Linear Gaussian State Spate Models? $x_{1: T}^{*}=x_{1: T}^{\prime}$ (Gaussian)
2. Discrete Hidden State HMMs?

$$
x_{1: T}^{*} \neq x_{1: T}^{\prime}
$$

Inference: Kalman Filter

$$
\begin{aligned}
& 0 \\
& x \\
& p\left(x_{t-1}\left|y_{1: t-1}\right| y_{1: t-1}\right)
\end{aligned}
$$

Inference: Kalman Filter

$\underset{\text { dynamics }}{\substack{\text { diffuse via }}}\left(\begin{array}{l}p\left(x_{t-1} \mid y_{1: t-1}\right) \\ p\left(x_{t} \mid y_{1: t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1}\end{array}\right.$

Inference: Kalman Filter

diffuse via
dynamics $\longrightarrow \begin{aligned} & p\left(x_{t-1} \mid y_{1: t-1}\right) \\ & p\left(x_{t} \mid y_{1: t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1}\end{aligned}$

Inference: Kalman Filter

Inference: Kalman Filter

Inference: Kalman Filter

Inference: Kalman Filter

 recurse

Inference: Derivation of General Filtering Equations

Model

Inference: Derivation of General Filtering Equations

Inference: Derivation of General Filtering Equations

$$
\begin{aligned}
\begin{array}{c}
\text { Model } \\
\text { latent } \\
\text { variables } \\
\text { (infer these) } \\
\text { observed } \\
\text { data }
\end{array} & \rightarrow
\end{aligned} \underbrace{p\left(y_{1: T}, x_{1: T}\right)=} \begin{aligned}
& \text { Rules of probability }
\end{aligned}
$$

Inference: Derivation of General Filtering Equations

$$
\begin{aligned}
& \text { Model } \\
& p\left(y_{1: T}, x_{1: T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right) p\left(y_{t} \mid x_{t}\right) \\
& \text { Rules of probability } \\
& \text { Inference } \\
& \text { product rule } \\
& p(A \mid B, C)=\frac{1}{p(B \mid C)} p(B \mid A, C) p(A \mid C)=? \\
& \text { sum rule } \\
& p(A \mid C)=\sum_{B} p(A, B \mid C) \\
& p\left(x_{t} \mid y_{1: t}\right)=p\left(x_{t} \mid y_{t}, y_{1: t-1}\right) \\
& =\frac{1}{p\left(y_{t} \mid y_{1: t-1}\right)} p\left(y_{t} \mid x_{t}, y_{1: t-1}\right) p\left(x_{t} \mid y_{1: t-1}\right) \quad \begin{array}{l}
\text { product rule } \\
A=x_{t} B=y_{t} C=y_{1: t-1}
\end{array} \\
& =\frac{1}{p\left(y_{t} \mid y_{1: t-1}\right)} p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right) \quad \begin{array}{l}
\text { conditional independence from model } \\
y_{t} \perp y_{1: t-1} \mid x_{t}
\end{array} \\
& \propto p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right) \quad \text { constant of proportionality } p\left(y_{t} \mid y_{1: t-1}\right) \text { (see learning) }
\end{aligned}
$$

$$
p\left(x_{t} \mid y_{1: t-1}\right)=\int p\left(x_{t}, x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1} \quad \stackrel{\text { sum rule }}{A=x_{t} B=x_{t-1} C=y_{1: t-1}}
$$

Inference: Derivation of General Filtering Equations

$$
\begin{aligned}
& \text { Model } \\
& p\left(y_{1: T}, x_{1: T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right) p\left(y_{t} \mid x_{t}\right) \\
& \text { Rules of probability } \\
& \text { Inference } \\
& \text { product rule } \\
& p(A \mid B, C)=\frac{1}{p(B \mid C)} p(B \mid A, C) p(A \mid C)=? \\
& \text { sum rule } \\
& p(A \mid C)=\sum_{B} p(A, B \mid C) \\
& p\left(x_{t} \mid y_{1: t}\right)=p\left(x_{t} \mid y_{t}, y_{1: t-1}\right) \\
& =\frac{1}{p\left(y_{t} \mid y_{1: t-1}\right)} p\left(y_{t} \mid x_{t}, y_{1: t-1}\right) p\left(x_{t} \mid y_{1: t-1}\right) \quad \begin{array}{l}
\text { product rule } \\
A=x_{t} B=y_{t} C=y_{1: t-1}
\end{array} \\
& =\frac{1}{p\left(y_{t} \mid y_{1: t-1}\right)} p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right) \quad \begin{array}{l}
\text { conditional independence from model } \\
y_{t} \perp y_{1: t-1} \mid x_{t}
\end{array} \\
& \propto p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right) \quad \text { constant of proportionality } p\left(y_{t} \mid y_{1: t-1}\right) \text { (see learning) } \\
& p\left(x_{t} \mid y_{1: t-1}\right)=\int p\left(x_{t}, x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1} \quad \begin{array}{l}
\text { sum rule } \\
A=x_{t}
\end{array} \quad B=x_{t-1} C=y_{1: t-1} \\
& =\int p\left(x_{t} \mid x_{t-1}, y_{1: t-1}\right) p\left(x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1} \quad \text { product rule }
\end{aligned}
$$

Inference: Derivation of General Filtering Equations

$$
\begin{aligned}
& \text { Model } \\
& p\left(y_{1: T}, x_{1: T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right) p\left(y_{t} \mid x_{t}\right) \\
& p\left(y_{1: T}, x_{1: T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right) p\left(y_{t} \mid x_{t}\right) \\
& p\left(x_{t} \mid y_{1: t}\right)=p\left(x_{t} \mid y_{t}, y_{1: t-1}\right) \\
& =\frac{1}{p\left(y_{t} \mid y_{1: t-1}\right)} p\left(y_{t} \mid x_{t}, y_{1: t-1}\right) p\left(x_{t} \mid y_{1: t-1}\right) \quad \begin{array}{l}
\text { product rule } \\
A=x_{t} B=y_{t} C=y_{1: t-1}
\end{array} \\
& =\frac{1}{p\left(y_{t} \mid y_{1: t-1}\right)} p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right) \quad \begin{array}{l}
\text { conditional indepen } \\
y_{t} \perp y_{1: t-1} \mid x_{t}
\end{array} \\
& \propto p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right) \quad \text { constant of proportionality } p\left(y_{t} \mid y_{1: t-1}\right) \text { (see learning) } \\
& p\left(x_{t} \mid y_{1: t-1}\right)=\int p\left(x_{t}, x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1} \quad \stackrel{\text { sum rule }}{A=x_{t}} B=x_{t-1} C=y_{1: t-1} \\
& =\int p\left(x_{t} \mid x_{t-1}, y_{1: t-1}\right) p\left(x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1} \quad \text { product rule } \\
& =\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1} \quad \text { conditional independence from model }
\end{aligned}
$$

Inference: Kalman Filter

$$
\begin{aligned}
& p\left(x_{t-1} \mid y_{1: t-1}\right) \\
& \begin{array}{c}
\text { diffuse via } \\
\text { dynamics }
\end{array} \\
& p\left(x_{t} \mid y_{1: t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { combine } \\
\text { with } \\
\text { likelihood }
\end{array} \\
& p\left(x_{t} \mid y_{1: t}\right) \propto p\left(x_{t} \mid y_{1: t-1}\right) p\left(y_{t} \mid x_{t}\right) \\
& \text { prior }
\end{aligned}
$$

Inference: Kalman Filter

$$
\begin{aligned}
& \begin{array}{l}
\text { combine } \\
\text { with } \\
\text { likelihood }
\end{array} \\
& p\left(x_{t} \mid y_{1: t}\right) \propto p\left(x_{t} \mid y_{1: t-1}\right) p\left(y_{t} \mid x_{t}\right) \\
& \text { prior } \quad \text { likelihood }
\end{aligned}
$$

Inference: Kalman Filter


```
combine
with
likelihood
p(\mp@subsup{x}{t}{}|\mp@subsup{y}{1:t}{})\proptop(\mp@subsup{x}{t}{}|\mp@subsup{y}{1:t-1}{})p(\mp@subsup{y}{t}{}|\mp@subsup{x}{t}{})
prior likelihood
```


Inference: Kalman Filter

Inference: Kalman Filter

$$
\begin{aligned}
& p\left(x_{t} \mid y_{1: t-1}^{\downarrow}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1} \\
& p\left(x_{t} \mid y_{1: t-1}\right)=\mathcal{G}\left(x_{t} ; \mu_{t}^{t-1}, V_{t}^{t-1}\right) \quad \mu_{t}^{t-1}=A \mu_{t-1}^{t-1}
\end{aligned}
$$

Inference: Kalman Filter

$$
\begin{aligned}
& p\left(x_{t} \mid y_{1: t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid y_{1: t-1}\right) \mathrm{d} x_{t-1} \\
& p\left(x_{t} \mid y_{1: t-1}\right)=\mathcal{G}\left(x_{t} ; \mu_{t}^{t-1}, V_{t}^{t-1}\right) \quad \mu_{t}^{t-1}=A \mu_{t-1}^{t-1} \\
& \text { combine } \\
& \text { with } \\
& \text { likelihood } \\
& p\left(x_{t} \mid y_{1: t}\right) \\
& \propto p\left(x_{t} \mid y_{1: t-1}\right) p\left(y_{t} \mid x_{t}\right) \\
& \text { prior } \\
& p\left(x_{t} \mid y_{1: t}\right)=\mathcal{G}\left(x_{t} ; \mu_{t}^{t}, V_{t}^{t}\right) \\
& V_{t}^{t-1}=A V_{t-1}^{t-1} A^{\top}+Q \\
& \mu_{t}^{t}=\stackrel{\text { preaiction }}{\mu_{t}^{t-1}}+K_{t}\left(y_{t}^{\downarrow}-C \mu_{t}^{t-1}\right) \\
& V_{t}^{t}=V_{t}^{t-1}-K_{t} C V_{t}^{t-1} \\
& \text { Kalman gain } \rightarrow K_{t}=V_{t}^{t-1} C^{\top}\left(C V_{t}^{t-1} C^{\top}+R\right)^{-1}
\end{aligned}
$$

Kalman Filter Demo

- data: $y_{t}=\sin (\omega t)+\sigma_{y} \epsilon_{t}$ where $\sigma_{y}^{2}=0.1$
- model: $x_{t}=\lambda x_{t-1}+\sigma \eta$ and $y_{t}=x_{t}+\sigma_{y} \eta_{t}^{\prime}$
where $\lambda=0.99$ and $\sigma^{2}=1-\lambda^{2}$
- demo shows how the Kalman filter processes the data to form estimates of the hidden state at each time point $p\left(x_{t} \mid y_{1: t}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

prediction for second latent variable $p\left(x_{2} \mid y_{1}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

form posterior over second latent variable $p\left(x_{2} \mid y_{1}, y_{2}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

prediction for third latent variable $p\left(x_{3} \mid y_{1}, y_{2}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

form posterior over third latent variable $p\left(x_{3} \mid y_{1}, y_{2}, y_{3}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

prediction for fourth latent variable $p\left(x_{4} \mid y_{1: 3}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

form posterior over fourth latent variable $p\left(x_{4} \mid y_{1: 4}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

prediction for fifth latent variable $p\left(x_{5} \mid y_{1: 4}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

form posterior over fifth latent variable $p\left(x_{5} \mid y_{1: 5}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

prediction for sixth latent variable $p\left(x_{6} \mid y_{1: 5}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

form posterior over sixth latent variable $p\left(x_{6} \mid y_{1: 6}\right)$

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Kalman Filter Demo

observed noisy data y_{t}, ground truth sinusoid

Inference: Forward Algorithm

$$
p\left(x_{t-1}=k \mid y_{1: t-1}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { combine } \\
\text { with } \\
\text { likelihood }
\end{array} \\
& p\left(x_{t}=k \mid y_{1: t}\right) \propto p\left(x_{t}=\underset{\text { prior }}{\left.k \mid y_{1: t-1}\right) p\left(y_{t} \mid x_{t}=k\right)}\right. \text { likelihood }
\end{aligned}
$$

Inference: Forward Algorithm

$$
\begin{aligned}
& p\left(x_{t-1}=k \mid y_{1: t-1}\right)\left.=\rho_{t-1}^{t-1}(k) \quad \begin{array}{c}
\text { in prediction } \\
\begin{array}{c}
\text { diffuse via } \\
\text { dynamics }
\end{array} \\
p\left(x_{t}=\right.
\end{array}\right) \\
& \text { variable being predicted }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { combine } \\
\text { with } \\
\text { likelihood }
\end{array} \\
& p\left(x_{t}=k \mid y_{1: t}\right) \propto p\left(x_{t}=\underset{\text { prior }}{\left.k \mid y_{1: t-1}\right) p\left(y_{t} \mid x_{t}=k\right)}\right. \text { likelihood }
\end{aligned}
$$

Inference: Forward Algorithm

$$
\begin{aligned}
& \begin{aligned}
& p\left(x_{t-1}=k \mid y_{1: t-1}\right)\left.=\rho_{t-1}^{t-1}(k) \quad \begin{array}{c}
\text { in prediction } \\
\begin{array}{c}
\text { diffuse via } \\
\text { dynamics }
\end{array} \\
p\left(x_{t}\right.
\end{array}\right) \\
& \text { variable being predicted }
\end{aligned} \\
& \begin{array}{l}
\left.\begin{array}{l}
\text { combine } \\
\text { with } \\
\text { likelihood }
\end{array} \right\rvert\, \\
p\left(x_{t}=k \mid y_{1: t}\right) \propto p\left(x_{t}=k \mid y_{1: t-1}\right) p\left(y_{t} \mid x_{t}=k\right)
\end{array} \\
& \text { prior likelihood }
\end{aligned}
$$

Inference: Forward Algorithm

$$
\begin{aligned}
& \text { - most recent data used } \\
& p\left(x_{t-1}=k \mid y_{1: t-1}\right)=\rho_{t-1}^{t-1}(k) \quad \text { in prediction } \\
& \text { diffuse via }<\text { variable being predicted } \\
& \begin{array}{l}
\begin{array}{l}
\text { diffuse via } \\
\text { dynamics }
\end{array} \downarrow \\
p
\end{array} \\
& p\left(x_{t}=k \mid y_{1: t-1}\right)=\sum_{l=1}^{K} p\left(x_{t}=k \mid x_{t-1}=l\right) p\left(x_{t-1}=l \mid y_{\substack{1: t-1 \\
p\left(x_{t} \mid y_{1: t-1}\right)}}\right)_{\substack{\circ}}^{k-1} \\
& \text { combine } \\
& \text { with } \\
& \text { likelihood } \\
& p\left(x_{t}=k \mid y_{1: t}\right) \propto p\left(x_{t}=k \mid y_{1: t-1}\right) p\left(y_{t} \mid x_{t}=k\right) \\
& \text { prior likelihood } \\
& p\left(x_{t-1} \mid y_{1: t-1}\right) \\
& p\left(x_{t} \mid x_{t-1}\right) \\
& \rho_{t}^{t}(k) \propto \rho_{t}^{t-1}(k) p\left(y_{t} \mid x_{t}=k\right)
\end{aligned}
$$

Inference: Forward Algorithm

$$
\begin{aligned}
& \text { (} x_{t-1} \text { most recent data used } \\
& p\left(x_{t-1}=k \mid y_{1: t-1}\right)=\rho_{t-1}^{t-1}(k) \quad \text { in prediction } \\
& \text { diffuse via } \quad<\text { variable being predicted } \\
& \text { dynamics } \downarrow \\
& p\left(x_{t}=k \mid y_{1: t-1}\right)=\sum_{l=1}^{K} p\left(x_{t}=k \mid x_{t-1}=l\right) p\left(x_{t-1}=l \mid y_{1: t-1}\right) \overbrace{p\left(x_{t} \mid y_{: t-1}\right)}^{p\left(x_{t} \mid x_{t-1}\right)} \\
& \begin{array}{l}
\left.\begin{array}{l}
\text { combine } \\
\text { with } \\
\text { likelihood }
\end{array} \right\rvert\, \\
p\left(x_{t}=k \mid y_{1: t}\right) \propto p\left(x_{t}=k \mid y_{1: t-1}\right) p\left(y_{t} \mid x_{t}=k\right)
\end{array} \\
& \text { prior likelihood } \\
& \bigwedge_{\substack{0 \\
x \\
p\left(x_{t} \mid x_{t-1}\right)}}^{p\left(x_{t-1} \mid y_{1: t-1}\right)} \\
& \rho_{t}^{t-1}(k)=\sum_{l=1}^{K} T(k, l) \rho_{t-1}^{t-1}(l) \\
& \rho_{t}^{t}(k) \propto \rho_{t}^{t-1}(k) p\left(y_{t} \mid x_{t}=k\right)
\end{aligned}
$$

When implementing, take care with numerical underflow/overflow.

Computing the likelihood

How can we compute the likelihood efficiently?

Computing the likelihood

How can we compute the likelihood efficiently?

$$
p\left(y_{1: T}\right)=\prod_{t=1}^{T} p\left(y_{t} \mid y_{1: t-1}\right)
$$

Computing the likelihood

How can we compute the likelihood efficiently?

$$
p\left(y_{1: T}\right)=\prod_{t=1}^{T} p\left(y_{t} \mid y_{1: t-1}\right)
$$

already retuned by Kalman Filter/Forward algorithm

$$
\begin{aligned}
p\left(x_{t} \mid y_{1: t}\right) & =\frac{1}{p\left(y_{t} \mid y_{1: t-1}\right)} p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right) \\
& \propto p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right)
\end{aligned}
$$

Computing the likelihood

How can we compute the likelihood efficiently?

$$
p\left(y_{1: T}\right)=\prod_{t=1}^{T} p\left(y_{t} \mid y_{1: t-1}\right)
$$

already retuned by Kalman Filter/Forward algorithm

$$
p\left(x_{t} \mid y_{1: t}\right)=\frac{1}{p\left(y_{t} \mid y_{1: t-1}\right)} p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right)
$$

$$
\propto p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right)
$$

$p\left(y_{t} \mid y_{1: t-1}\right)$ is normaliser of filter/forward algorithm update

Computing the likelihood

How can we compute the likelihood efficiently?

$$
p\left(y_{1: T}\right)=\prod_{t=1}^{T} p\left(y_{t} \mid y_{1: t-1}\right)
$$

already retuned by Kalman Filter/Forward algorithm

$$
\begin{aligned}
p\left(x_{t} \mid y_{1: t}\right) & =\frac{1}{p\left(y_{t} \mid y_{1: t-1}\right)} p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right) \\
& \propto p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right) \\
& p\left(y_{t} \mid y_{1: t-1}\right) \text { is normaliser of filter/forward algorithm update }
\end{aligned}
$$

How can we compute the smoothing estimate?

$$
p\left(x_{t} \mid y_{1: T}\right)
$$

LGSSM: Kalman Smoother
HMM: Forward-Backward= Algorithm

Computing the likelihood

How can we compute the likelihood efficiently?

$$
p\left(y_{1: T}\right)=\prod_{t=1}^{T} p\left(y_{t} \mid y_{1: t-1}\right)
$$

already retuned by Kalman Filter/Forward algorithm

$$
\begin{aligned}
p\left(x_{t} \mid y_{1: t}\right) & =\frac{1}{p\left(y_{t} \mid y_{1: t-1}\right)} p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right) \\
& \propto p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid y_{1: t-1}\right)
\end{aligned}
$$

$p\left(y_{t} \mid y_{1: t-1}\right)$ is normaliser of filter/forward algorithm update

How can we compute the smoothing estimate?

$$
p\left(x_{t} \mid y_{1: T}\right)
$$

LGSSM: Kalman Smoother
HMM: Forward-Backward= Algorithm

How can we compute the most probable sequence?

$$
x_{1: T}^{\prime}=\underset{x_{1: T}}{\arg \max } p\left(x_{1: T} \mid y_{1: T}\right)
$$

LGSSM: Kalman Smoother HMM: Viterbi Decoding

The magic of the Forward Algorithm: Dynamic Programming

What's going on here?
In discrete case, likelihood involves sum over all sequences: $x_{1: T}^{(k)}$

$$
p\left(y_{1: T}\right)=\sum_{\text {all sequences } k} p\left(y_{1: T}, x_{1: T}^{(k)}\right)
$$

The magic of the Forward Algorithm: Dynamic Programming

What's going on here?
In discrete case, likelihood involves sum over all sequences: $x_{1: T}^{(k)}$

$$
p\left(y_{1: T}\right)=\sum_{\text {all sequences } k} p\left(y_{1: T}, x_{1: T}^{(k)}\right)
$$

Trellis diagram represents possible sequences:

The magic of the Forward Algorithm: Dynamic Programming

What's going on here?
In discrete case, likelihood involves sum over all sequences: $x_{1: T}^{(k)}$

$$
p\left(y_{1: T}\right)=\sum_{\text {all sequences } k} p\left(y_{1: T}, x_{1: T}^{(k)}\right)
$$

Trellis diagram represents possible sequences:

Exponential number of sequences: K^{T}

The magic of the Forward Algorithm: Dynamic Programming

What's going on here?
In discrete case, likelihood involves sum over all sequences: $x_{1: T}^{(k)}$

$$
p\left(y_{1: T}\right)=\sum_{\text {all sequences } k} p\left(y_{1: T}, x_{1: T}^{(k)}\right)
$$

Trellis diagram represents possible sequences:

Exponential number of sequences: K^{T}
But Forward algorithm had linear complexity in time (loop over t)

The magic of the Forward Algorithm: Dynamic Programming

What's going on here?
In discrete case, likelihood involves sum over all sequences: $x_{1: T}^{(k)}$

$$
p\left(y_{1: T}\right)=\sum_{\text {all sequences } k} p\left(y_{1: T}, x_{1: T}^{(k)}\right)
$$

Trellis diagram represents possible sequences:

Exponential number of sequences: K^{T}
But Forward algorithm had linear complexity in time (loop over t) Markov property means we can forget history of previous states:
 just remember last one (dynamic programming/belief propagation)

Maximum Likelihood Learning of HMMs: simple once inference is solved
log-likelihood: $\quad \log p\left(y_{1: T} \mid \theta\right)=\log \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$

Maximum Likelihood Learning of HMMs: simple once inference is solved
log-likelihood: $\quad \log p\left(y_{1: T} \mid \theta\right)=\log \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
gradient of
log-likelihood:

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}
$$

Maximum Likelihood Learning of HMMs: simple once inference is solved
log-likelihood: $\quad \log p\left(y_{1: T} \mid \theta\right)=\log \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
gradient of
log-likelihood: $\quad \frac{\mathrm{d}}{\mathrm{d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{d} \theta} p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
show gradient depends on simple moments of posterior:

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)
$$

Maximum Likelihood Learning of HMMs: simple once inference is solved
log-likelihood: $\quad \log p\left(y_{1: T} \mid \theta\right)=\log \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
gradient of
log-likelihood: $\quad \frac{\mathrm{d}}{\mathrm{d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{d} \theta} p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
show gradient depends on simple moments of posterior:

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} \exp \left(\log p\left(y_{1: T}, x_{1: T} \mid \theta\right)\right) d x_{1: T}
$$

Maximum Likelihood Learning of HMMs: simple once inference is solved
log-likelihood: $\quad \log p\left(y_{1: T} \mid \theta\right)=\log \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
gradient of
log-likelihood: $\quad \frac{\mathrm{d}}{\mathrm{d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{d} \theta} p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
show gradient depends on simple moments of posterior:

$$
E\left(\theta ; x_{1: T}, y_{1: T}\right)
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} \exp \left(\sqrt{\log p\left(y_{1: T}, x_{1: T} \mid \theta\right)}\right) d x_{1: T}
$$

Maximum Likelihood Learning of HMMs: simple once inference is solved
log-likelihood: $\quad \log p\left(y_{1: T} \mid \theta\right)=\log \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
gradient of log-likelihood: $\quad \frac{\mathrm{d}}{\mathrm{d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{d} \theta} p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
show gradient depends on simple moments of posterior:

$$
E\left(\theta ; x_{1: T}, y_{1: T}\right)=\sum_{t}\left[\log p\left(y_{t} \mid x_{t}, \theta\right)+\log p\left(x_{t} \mid x_{t-1}, \theta\right)\right]
$$

$$
E\left(\theta ; x_{1: T}, y_{1: T}\right)
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} \exp \left(\sqrt{\log p\left(y_{1: T}, x_{1: T} \mid \theta\right)}\right) d x_{1: T}
$$

Maximum Likelihood Learning of HMMs: simple once inference is solved
log-likelihood: $\quad \log p\left(y_{1: T} \mid \theta\right)=\log \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
gradient of log-likelihood: $\quad \frac{\mathrm{d}}{\mathrm{d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{d} \theta} p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$

$$
\text { simple form: e.g. quadratic in } x \text { for LGSSMs }
$$

show gradient depends on simple moments $E\left(\theta ; x_{1: T}, y_{1: T}\right)=\sum_{t}\left[\log p\left(y_{t} \mid x_{t}, \theta\right)+\log p\left(x_{t} \mid x_{t-1}, \theta\right)\right]$ of posterior: $E\left(\theta ; x_{1: T}, y_{1: T}\right)$

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} \exp \left(\underset{\log p\left(y_{1: T}, x_{1: T} \mid \theta\right)}{\log }\right) d x_{1: T}
$$

Maximum Likelihood Learning of HMMs: simple once inference is solved
log-likelihood: $\quad \log p\left(y_{1: T} \mid \theta\right)=\log \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
gradient of log-likelihood:

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}
$$

show gradient depends on simple moments of posterior:

$$
\text { simple form: e.g. quadratic in } x \text { for LGSSMs }
$$

$$
E\left(\theta ; x_{1: T}, y_{1: T}\right)=\sum_{t}\left[\log p\left(y_{t} \mid x_{t}, \theta\right)+\log p\left(x_{t} \mid x_{t-1}, \theta\right)\right]
$$

$$
E\left(\theta ; x_{1: T}, y_{1: T}\right)
$$

$$
\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right) & =\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} \exp \left(\log p\left(y_{1: T}, x_{1: T} \mid \theta\right)\right.
\end{array}\right) d x_{1: T}, \quad \frac{1}{p\left(y_{1: T} \mid \theta\right)} \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) \frac{\mathrm{d}}{\mathrm{~d} \theta} E\left(\theta ; x_{1: T}, y_{1: T}\right) d x_{1: T} .
$$

Maximum Likelihood Learning of HMMs: simple once inference is solved
log-likelihood: $\quad \log p\left(y_{1: T} \mid \theta\right)=\log \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
gradient of log-likelihood:

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}
$$

show gradient depends on simple moments of posterior:

$$
\text { simple form: e.g. quadratic in } x \text { for LGSSMs }
$$

$$
E\left(\theta ; x_{1: T}, y_{1: T}\right)=\sum_{t}\left[\log p\left(y_{t} \mid x_{t}, \theta\right)+\log p\left(x_{t} \mid x_{t-1}, \theta\right)\right]
$$

$$
E\left(\theta ; x_{1: T}, y_{1: T}\right)
$$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} \exp \left(\log p\left(y_{1: T}, x_{1: T} \mid \theta\right)\right) d x_{1: T} \\
& \frac{\mathrm{~d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) \frac{\mathrm{d}}{\mathrm{~d} \theta} E\left(\theta ; x_{1: T}, y_{1: T}\right) d x_{1: T} \\
& \frac{\mathrm{~d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\int p\left(x_{1: T} \mid y_{1: T}, \theta\right) \frac{\mathrm{d}}{\mathrm{~d} \theta} E\left(\theta ; x_{1: T}, y_{1: T}\right) d x_{1: T}
\end{aligned}
$$

Maximum Likelihood Learning of HMMs: simple once inference is solved
log-likelihood: $\quad \log p\left(y_{1: T} \mid \theta\right)=\log \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}$
gradient of log-likelihood:

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} p\left(y_{1: T}, x_{1: T} \mid \theta\right) d x_{1: T}
$$

show gradient depends on simple moments

$$
\text { simple form: e.g. quadratic in } x \text { for LGSSMs }
$$

$$
\left.\begin{array}{l}
\text { of posterior: } \\
\left.\qquad \begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right) & =\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int \frac{\mathrm{d}}{\mathrm{~d} \theta} \exp \left(\log p\left(y_{1: T}, y_{1: T}\right)\right. \\
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log p\left(x_{1: T} \mid \theta\right)
\end{array}\right) d x_{1: T} \\
\frac{\mathrm{~d}}{\mathrm{~d} \theta} \log p\left(y_{1: T} \mid \theta\right)
\end{array}=\frac{1}{p\left(y_{1: T} \mid \theta\right)} \int p\left(y_{1: T}, x_{1: T} \mid \theta\right) \frac{\mathrm{d}}{\mathrm{~d} \theta} E\left(\theta ; x_{1: T}, y_{1: T}\right) d x_{1: T}\right] p\left(x_{1: T} \mid y_{1: T}, \theta\right) \frac{\mathrm{d}}{\mathrm{~d} \theta} E\left(\theta ; x_{1: T}, y_{1: T}\right) d x_{1: T} .
$$

Course Survey: please complete this!

